919 research outputs found

    Population dynamics and adaptative strategies of Martiodrilus carimaguensis (Oligochaeta, Glossoscolecidae), a native species from the well-drained savannas of Colombia

    Get PDF
    #Martiodrilus carimaguensis (Oligochaeta, Glossoscolecidae) is a large, anecic native earthworm species which was found in natural and disturbed savannas in the Oxisols of the Colombian Llanos. Its population dynamics were studied in a native savanna, and in a 17 year old grazed grass-legume pasture where density and biomass were higher. Monthly cast deposition on the soil surface in the improved pasture was 38.4 x 10(exp 3) fresh casts/ha, eleven times more than in the native savanna. A strong relationship was found between numbers of #M. carimaguensis and numbers of fresh surface casts. Different patterns of adaptation to the dry season were observed for adults and juveniles. Adults are active for eight months whereas juveniles enter diapause 3-4 months earlier. The vertical distribution pattern of the earthworm population also shows marked seasonal changes. (Résumé d'auteur

    The effective Lagrangian of dark energy from observations

    Get PDF
    Using observational data on the expansion rate of the universe (H(z)) we constrain the effective Lagrangian of the current accelerated expansion. Our results show that the effective potential is consistent with being flat i.e., a cosmological constant; it is also consistent with the field moving along an almost flat potential like a pseudo-Goldstone boson. We show that the potential of dark energy does not deviate from a constant at more than 6% over the redshift range 0 < z < 1. The data can be described by just a constant term in the Lagrangian and do not require any extra parameters; therefore there is no evidence for augmenting the number of parameters of the LCDM paradigm. We also find that the data justify the effective theory approach to describe accelerated expansion and that the allowed parameters range satisfy the expected hierarchy. Future data, both from cosmic chronometers and baryonic acoustic oscillations, that can measure H(z) at the % level, could greatly improve constraints on the flatness of the potential or shed some light on possible mechanisms driving the accelerated expansion. Besides the above result, it is shown that the effective Lagrangian of accelerated expansion can be constrained from cosmological observations in a model-independent way and that direct measurements of the expansion rate H(z) are most useful to do so.Comment: 9 pages, 3 figures, JCAP submitted. This paper presents a reconstruction of the dark energy potential. It is a companion to Moresco et al. 2012a, which presents new H(z) results and Moresco et al. 2012b, which provides cosmological parameter constraint

    Impact of pesticides on farmer health and the rice environment

    Get PDF

    Cosmic Chronometers: Constraining the Equation of State of Dark Energy. I: H(z) Measurements

    Get PDF
    We present new determinations of the cosmic expansion history from red-envelope galaxies. We have obtained for this purpose high-quality spectra with the Keck-LRIS spectrograph of red-envelope galaxies in 24 galaxy clusters in the redshift range 0.2 < z < 1.0. We complement these Keck spectra with high-quality, publicly available archival spectra from the SPICES and VVDS surveys. We improve over our previous expansion history measurements in Simon et al. (2005) by providing two new determinations of the expansion history: H(z) = 97 +- 62 km/sec/Mpc at z = 0.5 and H(z) = 90 +- 40 km/sec/Mpc at z = 0.8. We discuss the uncertainty in the expansion history determination that arises from uncertainties in the synthetic stellar-population models. We then use these new measurements in concert with cosmic-microwave-background (CMB) measurements to constrain cosmological parameters, with a special emphasis on dark-energy parameters and constraints to the curvature. In particular, we demonstrate the usefulness of direct H(z) measurements by constraining the dark- energy equation of state parameterized by w0 and wa and allowing for arbitrary curvature. Further, we also constrain, using only CMB and H(z) data, the number of relativistic degrees of freedom to be 4 +- 0.5 and their total mass to be < 0.2 eV, both at 1-sigma.Comment: Submitted to JCA

    Observational Constraints to Ricci Dark Energy Model by Using: SN, BAO, OHD, fgas Data Sets

    Full text link
    In this paper, we perform a global constraint on the Ricci dark energy model with both the flat case and the non-flat case, using the Markov Chain Monte Carlo (MCMC) method and the combined observational data from the cluster X-ray gas mass fraction, Supernovae of type Ia (397), baryon acoustic oscillations, current Cosmic Microwave Background, and the observational Hubble function. In the flat model, we obtain the best fit values of the parameters in 1σ,2σ1\sigma, 2\sigma regions: Ωm0=0.29270.03230.0388+0.0420+0.0542\Omega_{m0}=0.2927^{+0.0420 +0.0542}_{-0.0323 -0.0388}, α=0.38230.04180.0541+0.0331+0.0415\alpha=0.3823^{+0.0331 +0.0415}_{-0.0418 -0.0541}, Age/Gyr=13.480.160.21+0.13+0.17Age/Gyr=13.48^{+0.13 +0.17}_{-0.16 -0.21}, H0=69.092.373.39+2.56+3.09H_0=69.09^{+2.56 +3.09}_{-2.37 -3.39}. In the non-flat model, the best fit parameters are found in 1σ,2σ1\sigma, 2\sigma regions:Ωm0=0.30030.03710.0423+0.0367+0.0429\Omega_{m0}=0.3003^{+0.0367 +0.0429}_{-0.0371 -0.0423}, α=0.38450.04740.0523+0.0386+0.0521\alpha=0.3845^{+0.0386 +0.0521}_{-0.0474 -0.0523}, Ωk=0.02400.01300.0153+0.0109+0.0133\Omega_k=0.0240^{+0.0109 +0.0133}_{-0.0130 -0.0153}, Age/Gyr=12.540.370.49+0.51+0.65Age/Gyr=12.54^{+0.51 +0.65}_{-0.37 -0.49}, H0=72.893.053.72+3.31+3.88H_0=72.89^{+3.31 +3.88}_{-3.05 -3.72}. Compared to the constraint results in the ΛCDM\Lambda \textmd{CDM} model by using the same datasets, it is shown that the current combined datasets prefer the ΛCDM\Lambda \textmd{CDM} model to the Ricci dark energy model.Comment: 12 pages, 3 figure

    Constraining the expansion rate of the Universe using low-redshift ellipticals as cosmic chronometers

    Full text link
    We present a new methodology to determine the expansion history of the Universe analyzing the spectral properties of early type galaxies (ETG). We found that for these galaxies the 4000\AA break is a spectral feature that correlates with the relative ages of ETGs. In this paper we describe the method, explore its robustness using theoretical synthetic stellar population models, and apply it using a SDSS sample of \sim14 000 ETGs. Our motivation to look for a new technique has been to minimise the dependence of the cosmic chronometer method on systematic errors. In particular, as a test of our method, we derive the value of the Hubble constant H0=72.6±2.8H_0 = 72.6 \pm 2.8 (stat) ±2.3\pm2.3 (syst) (68% confidence), which is not only fully compatible with the value derived from the Hubble key project, but also with a comparable error budget. Using the SDSS, we also derive, assuming w=constant, a value for the dark energy equation of state parameter w=1±0.2w = -1 \pm 0.2 (stat) ±0.3\pm0.3 (syst). Given the fact that the SDSS ETG sample only reaches z0.3z \sim 0.3, this result shows the potential of the method. In future papers we will present results using the high-redshift universe, to yield a determination of H(z) up to z1z \sim 1.Comment: 25 pages, 17 figures, JCAP accepte

    New constraints on cosmological parameters and neutrino properties using the expansion rate of the Universe to z~1.75

    Get PDF
    We have assembled a compilation of observational Hubble parameter measurements estimated with the differential evolution of cosmic chronometers, in the redshift range 0<z<1.75. This sample has been used, in combination with CMB data and with the most recent estimate of the Hubble constant H_0, to derive new constraints on several cosmological parameters. The new Hubble parameter data are very useful to break some of the parameter degeneracies present in CMB-only analysis, and to constrain possible deviations from the standard (minimal) flat \Lambda CDM model. The H(z) data are especially valuable in constraining \Omega_k and \Omega_DE in models that allow a variation of those parameters, yielding constraints that are competitive with those obtained using Supernovae and/or baryon acoustic oscillations. We also find that our H(z) data are important to constrain parameters that do no affect directly the expansion history, by breaking or reducing degeneracies with other parameters. We find that Nrel=3.45\pm0.33 using WMAP 7-years data in combination with South Pole Telescope data and our H(z) determinations (Nrel=3.71\pm0.45 using Atacama Cosmology Telescope data instead of South Pole Telescope). We exclude Nrel>4 at 95% CL (74% CL) using the same datasets combinations. We also put competitive limits on the sum of neutrino masses, \Sigma m_\nu<0.24 eV at 68% confidence level. These results have been proven to be extremely robust to many possible systematic effects, such as the initial choice of stellar population synthesis model adopted to estimate H(z) and the progenitor-bias.Comment: 18 pages, 17 figures, 7 tables, published in JCAP. It is a companion to Moresco et al. (2012a, http://arxiv.org/abs/1201.3609) and Jimenez et al. (2012, http://arxiv.org/abs/1201.3608). The H(z) data can be downloaded at http://www.physics-astronomy.unibo.it/en/research/areas/astrophysics/cosmology-with-cosmic-chronometer

    Constraints on the CMB temperature redshift dependence from SZ and distance measurements

    Full text link
    The relation between redshift and the CMB temperature, TCMB(z)=T0(1+z)T_{CMB}(z)=T_0(1+z) is a key prediction of standard cosmology, but is violated in many non-standard models. Constraining possible deviations to this law is an effective way to test the Λ\LambdaCDM paradigm and search for hints of new physics. We present state-of-the-art constraints, using both direct and indirect measurements. In particular, we point out that in models where photons can be created or destroyed, not only does the temperature-redshift relation change, but so does the distance duality relation, and these departures from the standard behaviour are related, providing us with an opportunity to improve constraints. We show that current datasets limit possible deviations of the form TCMB(z)=T0(1+z)1βT_{CMB}(z)=T_0(1+z)^{1-\beta} to be β=0.004±0.016\beta=0.004\pm0.016 up to a redshift z3z\sim 3. We also discuss how, with the next generation of space and ground-based experiments, these constraints can be improved by more than one order of magnitude.Comment: 27 pages, 11 figure

    Observational constraints on holographic dark energy with varying gravitational constant

    Full text link
    We use observational data from Type Ia Supernovae (SN), Baryon Acoustic Oscillations (BAO), Cosmic Microwave Background (CMB) and observational Hubble data (OHD), and the Markov Chain Monte Carlo (MCMC) method, to constrain the cosmological scenario of holographic dark energy with varying gravitational constant. We consider both flat and non-flat background geometry, and we present the corresponding constraints and contour-plots of the model parameters. We conclude that the scenario is compatible with observations. In 1σ\sigma we find ΩΛ0=0.720.03+0.03\Omega_{\Lambda0}=0.72^{+0.03}_{-0.03}, Ωk0=0.00130.0040+0.0130\Omega_{k0}=-0.0013^{+0.0130}_{-0.0040}, c=0.800.14+0.19c=0.80^{+0.19}_{-0.14} and ΔGG/G=0.00250.0050+0.0080\Delta_G\equiv G'/G=-0.0025^{+0.0080}_{-0.0050}, while for the present value of the dark energy equation-of-state parameter we obtain w0=1.040.20+0.15w_0=-1.04^{+0.15}_{-0.20}.Comment: 12 pages, 2 figures, version published in JCA

    Bianchi Type III Anisotropic Dark Energy Models with Constant Deceleration Parameter

    Full text link
    The Bianchi type III dark energy models with constant deceleration parameter are investigated. The equation of state parameter ω\omega is found to be time dependent and its existing range for this model is consistent with the recent observations of SN Ia data, SN Ia data (with CMBR anisotropy) and galaxy clustering statistics. The physical aspect of the dark energy models are discussed.Comment: 12 pages, 2 figures, Accepted version of IJT
    corecore