669 research outputs found
Migration and horizontal gene transfer divide microbial genomes into multiple niches.
Horizontal gene transfer is central to microbial evolution, because it enables genetic regions to spread horizontally through diverse communities. However, how gene transfer exerts such a strong effect is not understood. Here we develop an eco-evolutionary model and show how genetic transfer, even when rare, can transform the evolution and ecology of microbes. We recapitulate existing models, which suggest that asexual reproduction will overpower horizontal transfer and greatly limit its effects. We then show that allowing immigration completely changes these predictions. With migration, the rates and impacts of horizontal transfer are greatly increased, and transfer is most frequent for loci under positive natural selection. Our analysis explains how ecologically important loci can sweep through competing strains and species. In this way, microbial genomes can evolve to become ecologically diverse where different genomic regions encode for partially overlapping, but distinct, ecologies. Under these conditions ecological species do not exist, because genes, not species, inhabit niches
Inter-study reproducibility of arterial spin labelling magnetic resonance imaging for measurement of renal perfusion in healthy volunteers at 3 Tesla
Background:
Measurement of renal perfusion is a crucial part of measuring kidney function. Arterial spin labelling magnetic resonance imaging (ASL MRI) is a non-invasive method of measuring renal perfusion using magnetised blood as endogenous contrast. We studied the reproducibility of ASL MRI in normal volunteers.<p></p>
Methods:
ASL MRI was performed in healthy volunteers on 2 occasions using a 3.0 Tesla MRI scanner with flow-sensitive alternating inversion recovery (FAIR) perfusion preparation with a steady state free precession (True-FISP) pulse sequence. Kidney volume was measured from the scanned images. Routine serum and urine biochemistry were measured prior to MRI scanning.<p></p>
Results:
12 volunteers were recruited yielding 24 kidneys, with a mean participant age of 44.1 ± 14.6 years, blood pressure of 136/82 mmHg and chronic kidney disease epidemiology formula estimated glomerular filtration rate (CKD EPI eGFR) of 98.3 ± 15.1 ml/min/1.73 m2. Mean kidney volumes measured using the ellipsoid formula and voxel count method were 123.5 ± 25.5 cm3, and 156.7 ± 28.9 cm3 respectively. Mean kidney perfusion was 229 ± 41 ml/min/100 g and mean cortical perfusion was 327 ± 63 ml/min/100 g, with no significant differences between ASL MRIs. Mean absolute kidney perfusion calculated from kidney volume measured during the scan was 373 ± 71 ml/min. Bland Altman plots were constructed of the cortical and whole kidney perfusion measurements made at ASL MRIs 1 and 2. These showed good agreement between measurements, with a random distribution of means plotted against differences observed. The intra class correlation for cortical perfusion was 0.85, whilst the within subject coefficient of variance was 9.2%. The intra class correlation for whole kidney perfusion was 0.86, whilst the within subject coefficient of variance was 7.1%.<p></p>
Conclusions:
ASL MRI at 3.0 Tesla provides a repeatable method of measuring renal perfusion in healthy subjects without the need for administration of exogenous compounds. We have established normal values for renal perfusion using ASL MRI in a cohort of healthy volunteers.<p></p>
Giant Resonance Excitation with 115 MeV Protons
This work was supported by National Science Foundation Grants PHY 76-84033A01, PHY 78-22774, and Indiana Universit
Inelastic Proton Scattering at Intermediate Energies to Giant Resonances
Supported by the National Science Foundation and Indiana Universit
What do young athletes implicitly understand about psychological skills?
One reason sport psychologists teach psychological skills is to enhance performance in sport; but the value of psychological skills for young athletes is questionable because of the qualitative and quantitative differences between children and adults in their understanding of abstract concepts such as mental skills. To teach these skills effectively to young athletes, sport psychologists need to appreciate what young athletes implicitly understand about such skills because maturational (e.g., cognitive, social) and environmental (e.g., coaches) factors can influence the progressive development of children and youth. In the present qualitative study, we explored young athletes’ (aged 10–15 years) understanding of four basic psychological skills: goal setting, mental imagery, self-talk, and relaxation. Young athletes (n = 118: 75 males and 43 females) completed an open-ended questionnaire to report their understanding of these four basic psychological skills. Compared with the older youth athletes, the younger youth athletes were less able to explain the meaning of each psychological skill. Goal setting and mental imagery were better understood than self-talk and relaxation. Based on these findings, sport psychologists should consider adapting interventions and psychoeducational programs to match young athletes’ age and developmental level
Targeted nasal vaccination provides antibody-independent protection against Staphylococcus aureus.
Despite showing promise in preclinical models, anti-Staphylococcus aureus vaccines have failed in clinical trials. To date, approaches have focused on neutralizing/opsonizing antibodies; however, vaccines exclusively inducing cellular immunity have not been studied to formally test whether a cellular-only response can protect against infection. We demonstrate that nasal vaccination with targeted nanoparticles loaded with Staphylococcus aureus antigen protects against acute systemic S. aureus infection in the absence of any antigen-specific antibodies. These findings can help inform future developments in staphylococcal vaccine development and studies into the requirements for protective immunity against S. aureus
Coupled oscillators as models of phantom and scalar field cosmologies
We study a toy model for phantom cosmology recently introduced in the
literature and consisting of two oscillators, one of which carries negative
kinetic energy. The results are compared with the exact phase space picture
obtained for similar dynamical systems describing, respectively, a massive
canonical scalar field conformally coupled to the spacetime curvature, and a
conformally coupled massive phantom. Finally, the dynamical system describing
exactly a minimally coupled phantom is studied and compared with the toy model.Comment: 18 pages, LaTeX, to appear in Physical Review
High stakes and low bars: How international recognition shapes the conduct of civil wars
When rebel groups engage incumbent governments in war for control of the state, questions of international recognition arise. International recognition determines which combatants can draw on state assets, receive overt military aid, and borrow as sovereigns—all of which can have profound consequences for the military balance during civil war. How do third-party states and international organizations determine whom to treat as a state's official government during civil war? Data from the sixty-one center-seeking wars initiated from 1945 to 2014 indicate that military victory is not a prerequisite for recognition. Instead, states generally rely on a simple test: control of the capital city. Seizing the capital does not foreshadow military victory. Civil wars often continue for many years after rebels take control and receive recognition. While geopolitical and economic motives outweigh the capital control test in a small number of important cases, combatants appear to anticipate that holding the capital will be sufficient for recognition. This expectation generates perverse incentives. In effect, the international community rewards combatants for capturing or holding, by any means necessary, an area with high concentrations of critical infrastructure and civilians. In the majority of cases where rebels contest the capital, more than half of its infrastructure is damaged or the majority of civilians are displaced (or both), likely fueling long-term state weakness
SRAO CO Observation of 11 Supernova Remnants in l = 70 to 190 deg
We present the results of 12CO J = 1-0 line observations of eleven Galactic
supernova remnants (SNRs) obtained using the Seoul Radio Astronomy Observatory
(SRAO) 6-m radio telescope. The observation was made as a part of the SRAO CO
survey of SNRs between l = 70 and 190 deg, which is intended to identify SNRs
interacting with molecular clouds. The mapping areas for the individual SNRs
are determined to cover their full extent in the radio continuum. We used
halfbeam grid spacing (60") for 9 SNRs and full-beam grid spacing (120") for
the rest. We detected CO emission towards most of the remnants. In six SNRs,
molecular clouds showed a good spatial relation with their radio morphology,
although no direct evidence for the interaction was detected. Two SNRs are
particularly interesting: G85.4+0.7, where there is a filamentary molecular
cloud along the radio shell, and 3C434.1, where a large molecular cloud appears
to block the western half of the remnant. We briefly summarize the results
obtained for individual SNRs.Comment: Accepted for publication in Astrophysics & Space Science. 12 pages,
12 figures, and 3 table
Average luminosity distance in inhomogeneous universes
The paper studies the correction to the distance modulus induced by
inhomogeneities and averaged over all directions from a given observer. The
inhomogeneities are modeled as mass-compensated voids in random or regular
lattices within Swiss-cheese universes. Void radii below 300 Mpc are
considered, which are supported by current redshift surveys and limited by the
recently observed imprint such voids leave on CMB. The averaging over all
directions, performed by numerical ray tracing, is non-perturbative and
includes the supernovas inside the voids. Voids aligning along a certain
direction produce a cumulative gravitational lensing correction that increases
with their number. Such corrections are destroyed by the averaging over all
directions, even in non-randomized simple cubic void lattices. At low
redshifts, the average correction is not zero but decays with the peculiar
velocities and redshift. Its upper bound is provided by the maximal average
correction which assumes no random cancelations between different voids. It is
described well by a linear perturbation formula and, for the voids considered,
is 20% of the correction corresponding to the maximal peculiar velocity. The
average correction calculated in random and simple cubic void lattices is
severely damped below the predicted maximal one after a single void diameter.
That is traced to cancellations between the corrections from the fronts and
backs of different voids. All that implies that voids cannot imitate the effect
of dark energy unless they have radii and peculiar velocities much larger than
the currently observed. The results obtained allow one to readily predict the
redshift above which the direction-averaged fluctuation in the Hubble diagram
falls below a required precision and suggest a method to extract the background
Hubble constant from low redshift data without the need to correct for peculiar
velocities.Comment: 34 pages, 21 figures, matches the version accepted in JCA
- …