4 research outputs found

    On the quantum and classical scattering times due to charged dislocations in an impure electron gas

    Full text link
    We derive the ratio of transport and single particle relaxation times in three and two - dimensional electron gases due to scattering from charged dislocations in semiconductors. The results are compared to the respective relaxation times due to randomly placed charged impurities. We find that the ratio is larger than the case of ionized impurity scattering in both three and two-dimensional electron transport.Comment: 4 pages, 3 figure

    On the Growth Mechanisms of GaAs Manowires by Ga-Assisted Chemical Beam Epitaxy

    No full text
    GaAs nanowires (NWs) growth kinetics by Ga-assisted chemical beam epitaxy on Si(111) substrates is studied as a function of the initial Ga catalyst dimensions and growth parameters such as substrate temperature and V/III flux ratio. The preparation method for substrates is optimized in order to obtain a surface oxide with a thickness around 0.5 nm, allowing the decomposition of Ga metalorganic precursor and the preferential growth of GaAs NWs at the oxide pinholes. The successful self-formation of Ga droplets over the slightly oxidized Si surface has been observed by scanning electron microscopy (SEM), whose initial size is demonstrated to affect both the NW growth rate and the resultant NW aspect ratio. NW morphology is thoroughly analyzed by SEM, showing a self-organized array of vertically aligned match-shaped GaAs NWs with a hexagonal footprint. In addition, the crystalline structure of NWs is monitored in-situ by reflection high-energy diffraction (RHEED), showing pure zincblende phase along the whole NW stem
    corecore