12 research outputs found

    Predicting VO2max from submaximal exercise and non-exercise data using artificial neural networks [Yapay Sinir aglari kullanilarak submaksimal egzersiz ve egzersize dayali olmayan verilerden VO2max tahmini]

    No full text
    2013 21st Signal Processing and Communications Applications Conference, SIU 2013 --24 April 2013 through 26 April 2013 -- Haspolat --The purpose of this study is to develop new multilayer feed-forward artificial neural network (ANN)-based maximal oxygen uptake (VO2max) prediction models by using submaximal treadmill exercise and nonexercise data. Using 10- fold cross validation on the dataset, standard error of estimate (SEE) and multiple correlation coefficient (R) of the models are calculated. It is shown that the models including submaximal, standard nonexercise and questionnaire variables yield higher R and lower SEE than the ones including submaximal and standard nonexercise variables only. The results of ANN-based models are also compared with the ones obtained by Multiple Linear Regression (MLR) and Support Vector Machines (SVM). It is shown that ANN-based models perform better than MLR and SVM-based models for predicting VO2max. © 2013 IEEE

    Phylum XIV. Bacteroidetes phyl. nov.

    No full text

    Safety of hospital discharge before return of bowel function after elective colorectal surgery

    No full text
    Background: Ileus is common after colorectal surgery and is associated with an increased risk of postoperative complications. Identifying features of normal bowel recovery and the appropriateness for hospital discharge is challenging. This study explored the safety of hospital discharge before the return of bowel function. Methods: A prospective, multicentre cohort study was undertaken across an international collaborative network. Adult patients undergoing elective colorectal resection between January and April 2018 were included. The main outcome of interest was readmission to hospital within 30 days of surgery. The impact of discharge timing according to the return of bowel function was explored using multivariable regression analysis. Other outcomes were postoperative complications within 30 days of surgery, measured using the Clavien\u2013Dindo classification system. Results: A total of 3288 patients were included in the analysis, of whom 301 (9\ub72 per cent) were discharged before the return of bowel function. The median duration of hospital stay for patients discharged before and after return of bowel function was 5 (i.q.r. 4\u20137) and 7 (6\u20138) days respectively (P < 0\ub7001). There were no significant differences in rates of readmission between these groups (6\ub76 versus 8\ub70 per cent; P = 0\ub7499), and this remained the case after multivariable adjustment for baseline differences (odds ratio 0\ub790, 95 per cent c.i. 0\ub755 to 1\ub746; P = 0\ub7659). Rates of postoperative complications were also similar in those discharged before versus after return of bowel function (minor: 34\ub77 versus 39\ub75 per cent; major 3\ub73 versus 3\ub74 per cent; P = 0\ub7110). Conclusion: Discharge before return of bowel function after elective colorectal surgery appears to be safe in appropriately selected patients

    Evaluation of a quality improvement intervention to reduce anastomotic leak following right colectomy (EAGLE): pragmatic, batched stepped-wedge, cluster-randomized trial in 64 countries

    No full text
    Background: Anastomotic leak affects 8 per cent of patients after right colectomy with a 10-fold increased risk of postoperative death. The EAGLE study aimed to develop and test whether an international, standardized quality improvement intervention could reduce anastomotic leaks. Methods: The internationally intended protocol, iteratively co-developed by a multistage Delphi process, comprised an online educational module introducing risk stratification, an intraoperative checklist, and harmonized surgical techniques. Clusters (hospital teams) were randomized to one of three arms with varied sequences of intervention/data collection by a derived stepped-wedge batch design (at least 18 hospital teams per batch). Patients were blinded to the study allocation. Low- and middle-income country enrolment was encouraged. The primary outcome (assessed by intention to treat) was anastomotic leak rate, and subgroup analyses by module completion (at least 80 per cent of surgeons, high engagement; less than 50 per cent, low engagement) were preplanned. Results: A total 355 hospital teams registered, with 332 from 64 countries (39.2 per cent low and middle income) included in the final analysis. The online modules were completed by half of the surgeons (2143 of 4411). The primary analysis included 3039 of the 3268 patients recruited (206 patients had no anastomosis and 23 were lost to follow-up), with anastomotic leaks arising before and after the intervention in 10.1 and 9.6 per cent respectively (adjusted OR 0.87, 95 per cent c.i. 0.59 to 1.30; P = 0.498). The proportion of surgeons completing the educational modules was an influence: the leak rate decreased from 12.2 per cent (61 of 500) before intervention to 5.1 per cent (24 of 473) after intervention in high-engagement centres (adjusted OR 0.36, 0.20 to 0.64; P < 0.001), but this was not observed in low-engagement hospitals (8.3 per cent (59 of 714) and 13.8 per cent (61 of 443) respectively; adjusted OR 2.09, 1.31 to 3.31). Conclusion: Completion of globally available digital training by engaged teams can alter anastomotic leak rates. Registration number: NCT04270721 (http://www.clinicaltrials.gov)
    corecore