410 research outputs found
A unique Fock quantization for fields in non-stationary spacetimes
In curved spacetimes, the lack of criteria for the construction of a unique
quantization is a fundamental problem undermining the significance of the
predictions of quantum field theory. Inequivalent quantizations lead to
different physics. Recently, however, some uniqueness results have been
obtained for fields in non-stationary settings. In particular, for vacua that
are invariant under the background symmetries, a unitary implementation of the
classical evolution suffices to pick up a unique Fock quantization in the case
of Klein-Gordon fields with time-dependent mass, propagating in a static
spacetime whose spatial sections are three-spheres. In fact, the field equation
can be reinterpreted as describing the propagation in a
Friedmann-Robertson-Walker spacetime after a suitable scaling of the field by a
function of time. For this class of fields, we prove here an even stronger
result about the Fock quantization: the uniqueness persists when one allows for
linear time-dependent transformations of the field in order to account for a
scaling by background functions. In total, paying attention to the dynamics,
there exists a preferred choice of quantum field, and only one
-invariant Fock representation for it that respects the standard
probabilistic interpretation along the evolution. The result has relevant
implications e.g. in cosmology.Comment: Typos correcte
The Lieb-Liniger Model as a Limit of Dilute Bosons in Three Dimensions
We show that the Lieb-Liniger model for one-dimensional bosons with repulsive
-function interaction can be rigorously derived via a scaling limit
from a dilute three-dimensional Bose gas with arbitrary repulsive interaction
potential of finite scattering length. For this purpose, we prove bounds on
both the eigenvalues and corresponding eigenfunctions of three-dimensional
bosons in strongly elongated traps and relate them to the corresponding
quantities in the Lieb-Liniger model. In particular, if both the scattering
length and the radius of the cylindrical trap go to zero, the
Lieb-Liniger model with coupling constant is derived. Our bounds
are uniform in in the whole parameter range , and apply
to the Hamiltonian for three-dimensional bosons in a spectral window of size
above the ground state energy.Comment: LaTeX2e, 19 page
Is there an oxidative cost of acute stress? Characterization, implication of glucocorticoids and modulation by prior stress experience
Acute rises in glucocorticoid hormones allow individuals to adaptively respond to environmental challenges but may also have negative consequences, including oxidative stress. While the effects of chronic glucocorticoid exposure on oxidative stress have been well characterized, those of acute stress or glucocorticoid exposure have mostly been overlooked. We examined the relationship between acute stress exposure, glucocorticoids and oxidative stress in Japanese quail (Coturnix japonica). We (i) characterized the pattern of oxidative stress during an acute stressor in two phenotypically distinct breeds; (ii) determined whether corticosterone ingestion, in the absence of acute stress, increased oxidative stress, which we call glucocorticoid-induced oxidative stress (GiOS); and (iii) explored how prior experience to stressful events affected GiOS. Both breeds exhibited an increase in oxidative stress in response to an acute stressor. Importantly, in the absence of acute stress, ingesting corticosterone caused an acute rise in plasma corticosterone and oxidative stress. Lastly, birds exposed to no previous acute stress or numerous stressful events had high levels of GiOS in response to acute stress, while birds with moderate prior exposure did not. Together, these findings suggest that an acute stress response results in GiOS, but prior experience to stressors may modulate that oxidative cost
Thermal Density Functional Theory in Context
This chapter introduces thermal density functional theory, starting from the
ground-state theory and assuming a background in quantum mechanics and
statistical mechanics. We review the foundations of density functional theory
(DFT) by illustrating some of its key reformulations. The basics of DFT for
thermal ensembles are explained in this context, as are tools useful for
analysis and development of approximations. We close by discussing some key
ideas relating thermal DFT and the ground state. This review emphasizes thermal
DFT's strengths as a consistent and general framework.Comment: Submitted to Spring Verlag as chapter in "Computational Challenges in
Warm Dense Matter", F. Graziani et al. ed
A Pearson-Dirichlet random walk
A constrained diffusive random walk of n steps and a random flight in Rd,
which can be expressed in the same terms, were investigated independently in
recent papers. The n steps of the walk are identically and independently
distributed random vectors of exponential length and uniform orientation.
Conditioned on the sum of their lengths being equal to a given value l,
closed-form expressions for the distribution of the endpoint of the walk were
obtained altogether for any n for d=1, 2, 4 . Uniform distributions of the
endpoint inside a ball of radius l were evidenced for a walk of three steps in
2D and of two steps in 4D. The previous walk is generalized by considering step
lengths which are distributed over the unit (n-1) simplex according to a
Dirichlet distribution whose parameters are all equal to q, a given positive
value. The walk and the flight above correspond to q=1. For any d >= 3, there
exist, for integer and half-integer values of q, two families of
Pearson-Dirichlet walks which share a common property. For any n, the d
components of the endpoint are jointly distributed as are the d components of a
vector uniformly distributed over the surface of a hypersphere of radius l in a
space Rk whose dimension k is an affine function of n for a given d. Five
additional walks, with a uniform distribution of the endpoint in the inside of
a ball, are found from known finite integrals of products of powers and Bessel
functions of the first kind. They include four different walks in R3 and two
walks in R4. Pearson-Liouville random walks, obtained by distributing the total
lengths of the previous Pearson-Dirichlet walks, are finally discussed.Comment: 33 pages 1 figure, the paper includes the content of a recently
submitted work together with additional results and an extended section on
Pearson-Liouville random walk
Security and Privacy Issues in Wireless Mesh Networks: A Survey
This book chapter identifies various security threats in wireless mesh
network (WMN). Keeping in mind the critical requirement of security and user
privacy in WMNs, this chapter provides a comprehensive overview of various
possible attacks on different layers of the communication protocol stack for
WMNs and their corresponding defense mechanisms. First, it identifies the
security vulnerabilities in the physical, link, network, transport, application
layers. Furthermore, various possible attacks on the key management protocols,
user authentication and access control protocols, and user privacy preservation
protocols are presented. After enumerating various possible attacks, the
chapter provides a detailed discussion on various existing security mechanisms
and protocols to defend against and wherever possible prevent the possible
attacks. Comparative analyses are also presented on the security schemes with
regards to the cryptographic schemes used, key management strategies deployed,
use of any trusted third party, computation and communication overhead involved
etc. The chapter then presents a brief discussion on various trust management
approaches for WMNs since trust and reputation-based schemes are increasingly
becoming popular for enforcing security in wireless networks. A number of open
problems in security and privacy issues for WMNs are subsequently discussed
before the chapter is finally concluded.Comment: 62 pages, 12 figures, 6 tables. This chapter is an extension of the
author's previous submission in arXiv submission: arXiv:1102.1226. There are
some text overlaps with the previous submissio
Non Linear Current Response of a Many-Level Tunneling System: Higher Harmonics Generation
The fully nonlinear response of a many-level tunneling system to a strong
alternating field of high frequency is studied in terms of the
Schwinger-Keldysh nonequilibrium Green functions. The nonlinear time dependent
tunneling current is calculated exactly and its resonance structure is
elucidated. In particular, it is shown that under certain reasonable conditions
on the physical parameters, the Fourier component is sharply peaked at
, where is the spacing between
two levels. This frequency multiplication results from the highly nonlinear
process of photon absorption (or emission) by the tunneling system. It is
also conjectured that this effect (which so far is studied mainly in the
context of nonlinear optics) might be experimentally feasible.Comment: 28 pages, LaTex, 7 figures are available upon request from
[email protected], submitted to Phys.Rev.
A first-principles approach to electrical transport in atomic-scale nanostructures
We present a first-principles numerical implementation of Landauer formalism
for electrical transport in nanostructures characterized down to the atomic
level. The novelty and interest of our method lies essentially on two facts.
First of all, it makes use of the versatile Gaussian98 code, which is widely
used within the quantum chemistry community. Secondly, it incorporates the
semi-infinite electrodes in a very generic and efficient way by means of Bethe
lattices. We name this method the Gaussian Embedded Cluster Method (GECM). In
order to make contact with other proposed implementations, we illustrate our
technique by calculating the conductance in some well-studied systems such as
metallic (Al and Au) nanocontacts and C-atom chains connected to metallic (Al
and Au) electrodes. In the case of Al nanocontacts the conductance turns out to
be quite dependent on the detailed atomic arrangement. On the contrary, the
conductance in Au nanocontacts presents quite universal features. In the case
of C chains, where the self-consistency guarantees the local charge transfer
and the correct alignment of the molecular and electrode levels, we find that
the conductance oscillates with the number of atoms in the chain regardless of
the type of electrode. However, for short chains and Al electrodes the even-odd
periodicity is reversed at equilibrium bond distances.Comment: 14 pages, two-column format, submitted to PR
Green function techniques in the treatment of quantum transport at the molecular scale
The theoretical investigation of charge (and spin) transport at nanometer
length scales requires the use of advanced and powerful techniques able to deal
with the dynamical properties of the relevant physical systems, to explicitly
include out-of-equilibrium situations typical for electrical/heat transport as
well as to take into account interaction effects in a systematic way.
Equilibrium Green function techniques and their extension to non-equilibrium
situations via the Keldysh formalism build one of the pillars of current
state-of-the-art approaches to quantum transport which have been implemented in
both model Hamiltonian formulations and first-principle methodologies. We offer
a tutorial overview of the applications of Green functions to deal with some
fundamental aspects of charge transport at the nanoscale, mainly focusing on
applications to model Hamiltonian formulations.Comment: Tutorial review, LaTeX, 129 pages, 41 figures, 300 references,
submitted to Springer series "Lecture Notes in Physics
Horizontal Branch Stars: The Interplay between Observations and Theory, and Insights into the Formation of the Galaxy
We review HB stars in a broad astrophysical context, including both variable
and non-variable stars. A reassessment of the Oosterhoff dichotomy is
presented, which provides unprecedented detail regarding its origin and
systematics. We show that the Oosterhoff dichotomy and the distribution of
globular clusters (GCs) in the HB morphology-metallicity plane both exclude,
with high statistical significance, the possibility that the Galactic halo may
have formed from the accretion of dwarf galaxies resembling present-day Milky
Way satellites such as Fornax, Sagittarius, and the LMC. A rediscussion of the
second-parameter problem is presented. A technique is proposed to estimate the
HB types of extragalactic GCs on the basis of integrated far-UV photometry. The
relationship between the absolute V magnitude of the HB at the RR Lyrae level
and metallicity, as obtained on the basis of trigonometric parallax
measurements for the star RR Lyrae, is also revisited, giving a distance
modulus to the LMC of (m-M)_0 = 18.44+/-0.11. RR Lyrae period change rates are
studied. Finally, the conductive opacities used in evolutionary calculations of
low-mass stars are investigated. [ABRIDGED]Comment: 56 pages, 22 figures. Invited review, to appear in Astrophysics and
Space Scienc
- …