20 research outputs found

    Zodiacal Exoplanets in Time (ZEIT). V. A Uniform Search for Transiting Planets in Young Clusters Observed by K2

    Get PDF
    Detection of transiting exoplanets around young stars is more difficult than for older systems owing to increased stellar variability. Nine young open cluster planets have been found in the K2 data, but no single analysis pipeline identified all planets. We have developed a transit search pipeline for young stars that uses a transit-shaped notch and quadratic continuum in a 12 or 24 hr window to fit both the stellar variability and the presence of a transit. In addition, for the most rapid rotators ( days) we model the variability using a linear combination of observed rotations of each star. To maximally exploit our new pipeline, we update the membership for four stellar populations observed by K2 (Upper Scorpius, Pleiades, Hyades, Praesepe) and conduct a uniform search of the members. We identify all known transiting exoplanets in the clusters, 17 eclipsing binaries, one transiting planet candidate orbiting a potential Pleiades member, and three orbiting unlikely members of the young clusters. Limited injection recovery testing on the known planet hosts indicates that for the older Praesepe systems we are sensitive to additional exoplanets as small as 1-2 R ⊕, and for the larger Upper Scorpius planet host (K2-33) our pipeline is sensitive to ∼4 R ⊕ transiting planets. The lack of detected multiple systems in the young clusters is consistent with the expected frequency from the original Kepler sample, within our detection limits. With a robust pipeline that detects all known planets in the young clusters, occurrence rate testing at young ages is now possible

    THE MASS-RADIUS RELATION OF YOUNG STARS. I. USCO 5, AN M4.5 ECLIPSING BINARY IN UPPER SCORPIUS OBSERVED BY K2

    Get PDF
    We present the discovery that UScoCTIO 5, a known spectroscopic binary in the Upper Scorpius star-forming region (P = 34 days, Mtot sin(i) = 0.64 M⊙), is an eclipsing system with both primary and secondary eclipses apparent in K2 light curves obtained during Campaign 2. We have simultaneously fit the eclipse profiles from the K2 light curves and the existing RV data to demonstrate that UScoCTIO 5 consists of a pair of nearly identical M4.5 stars with MA = 0.329 ± 0.002 M⊙, RA = 0.834 ± 0.006 R⊙, MB = 0.317 ± 0.002 M⊙, and RB = 0.810 ± 0.006 R⊙. The radii are broadly consistent with pre-main-sequence ages predicted by stellar evolutionary models, but none agree to within the uncertainties. All models predict systematically incorrect masses at the 25%-50% level for the HR diagram position of these mid-M dwarfs, suggesting significant modifications to mass-dependent outcomes of star and planet formation. The form of the discrepancy for most model sets is not that they predict luminosities that are too low, but rather that they predict temperatures that are too high, suggesting that the models do not fully encompass the physics of energy transport (via convection and/or missing opacities) and/or a miscalibration of the SpT-Teff scale. The simplest modification to the models (changing Teff to match observations) would yield an older age for this system, in line with the recently proposed older age of Upper Scorpius (τ ∼ 11 Myr)

    Orbital architectures of planet-hosting binaries - II. Low mutual inclinations between planetary and stellar orbits

    Get PDF
    Planet formation is often considered in the context of one circumstellar disc around one star. Yet, stellar binary systems are ubiquitous, and thus a substantial fraction of all potential planets must form and evolve in more complex, dynamical environments. We present the results of a 5 yr astrometric monitoring campaign studying 45 binary star systems that host Kepler planet candidates. The planet-forming environments in these systems would have literally been shaped by the binary orbits that persist to the present day. Crucially, the mutual inclinations of star-planet orbits can only be addressed by a statistical sample. We describe in detail our sample selection and Keck/NIRC2 laser guide star adaptive optics observations collected from 2012 to 2017. We measure orbital arcs, with a typical accuracy of ∼0.1 mas yr-1, that test whether the binary orbits tend to be aligned with the edge-on transiting planet orbits. We rule out randomly distributed binary orbits at 4.7σ, and we show that low mutual inclinations are required to explain the observed orbital arcs. If the stellar orbits have a field binary-like eccentricity distribution, then the best match to our observed orbital arcs is a distribution of mutual inclinations ranging from 0° to 30°. We discuss the implications of such widespread planet-binary alignment in the theoretical context of planet formation and circumstellar disc evolution

    TESTING the BINARY TRIGGER HYPOTHESIS in FUors

    Get PDF
    We present observations of three FU Orionis objects (hereafter, FUors) with nonredundant aperture-mask interferometry at 1.59 μm and 2.12 μm that probe for binary companions on the scale of the protoplanetary disk that feeds their accretion outbursts. We do not identify any companions to V1515 Cyg or HBC 722, but we do resolve a close binary companion to V1057 Cyg that is at the diffraction limit ( mas or 30 5 au) and currently much fainter than the outbursting star ( mag). Given the flux excess of the outbursting star, we estimate that the mass of the companion () is similar to or slightly below that of the FUor itself, and therefore it resembles a typical T Tauri binary system. Our observations only achieve contrast limits of mag, and hence we are only sensitive to companions that were near or above the pre-outburst luminosity of the FUors. It remains plausible that FUor outbursts could be tied to the presence of a close binary companion. However, we argue from the system geometry and mass reservoir considerations that these outbursts are not directly tied to the orbital period (i.e., occurring at periastron passage), but instead must only occur infrequently

    Zodiacal Exoplanets in Time (ZEIT). VIII. A Two-planet System in Praesepe from K2 Campaign 16

    Get PDF
    Young planets offer a direct view of the formation and evolution processes that produced the diverse population of mature exoplanet systems known today. The repurposed Kepler mission K2 is providing the first sample of young transiting planets by observing populations of stars in nearby, young clusters and stellar associations. We report the detection and confirmation of two planets transiting K2-264, an M2.5 dwarf in the 650 Myr old Praesepe open cluster. Using our notch-filter search method on the K2 light curve, we identify planets with periods of 5.84 and 19.66 days. This is currently the second known multi-transit system in open clusters younger than 1 Gyr. The inner planet has a radius of 2.27+0.20 -0.16 R⊕ and the outer planet has a radius of 2.27+0.20 -0.18 R ⊕. Both planets are likely mini-Neptunes. These planets are expected to produce radial velocity signals of 3.4 and 2.7 m s-1, respectively, which is smaller than the expected stellar variability in the optical (≃30 m s-1), making mass measurements unlikely in the optical but possible with future near-infrared spectrographs. We use an injection-recovery test to place robust limits on additional planets in the system and find that planets larger than 2 R ⊕ with periods of 1-20 days are unlikely

    ZODIACAL EXOPLANETS in TIME (ZEIT). IV. SEVEN TRANSITING PLANETS in the PRAESEPE CLUSTER

    Get PDF
    Open clusters and young stellar associations are attractive sites to search for planets and to test theories of planet formation, migration, and evolution. We present our search for, and characterization of, transiting planets in the 800 Myr old Praesepe (Beehive, M44) Cluster from K2 light curves. We identify seven planet candidates, six of which we statistically validate to be real planets, the last of which requires more data. For each host star, we obtain high-resolution NIR spectra to measure its projected rotational broadening and radial velocity, the latter of which we use to confirm cluster membership. We combine low-resolution spectra with the known cluster distance and metallicity to provide precise temperatures, masses, radii, and luminosities for the host stars. Combining our measurements of rotational broadening, rotation periods, and our derived stellar radii, we show that all planetary orbits are consistent with alignment to their host star's rotation. We fit the K2 light curves, including priors on stellar density to put constraints on the planetary eccentricities, all of which are consistent with zero. The difference between the number of planets found in Praesepe and Hyades (8 planets, Myr) and a similar data set for Pleiades (0 planets, ≃125 Myr) suggests a trend with age, but may be due to incompleteness of current search pipelines for younger, faster-rotating stars. We see increasing evidence that some planets continue to lose atmosphere past 800 Myr, as now two planets at this age have radii significantly larger than their older counterparts from Kepler

    The Obliquity of HIP 67522 b: A 17 Myr Old Transiting Hot, Jupiter-sized Planet

    Get PDF
    HIP 67522 b is a 17 Myr old, close-in (P orb = 6.96 days), Jupiter-sized (R = 10 R ⊕) transiting planet orbiting a Sun-like star in the Sco-Cen OB association. We present our measurement of the system's projected orbital obliquity via two spectroscopic transit observations using the CHIRON spectroscopic facility. We present a global model that accounts for large surface brightness features typical of such young stars during spectroscopic transit observations. With a value of | λ | = 5.8-5.7+2.8 it is unlikely that this well-aligned system is the result of a high-eccentricity-driven migration history. By being the youngest planet with a known obliquity, HIP 67522 b holds a special place in contributing to our understanding of giant planet formation and evolution. Our analysis shows the feasibility of such measurements for young and very active stars

    Zodiacal Exoplanets in Time (ZEIT). IX. A Flat Transmission Spectrum and a Highly Eccentric Orbit for the Young Neptune K2-25b as Revealed by Spitzer

    Get PDF
    Transiting planets in nearby young clusters offer the opportunity to study the atmospheres and dynamics of planets during their formative years. To this end, we focused on K2-25b - a close-in (P = 3.48 days), Neptune-sized exoplanet orbiting a M4.5 dwarf in the 650 Myr Hyades cluster. We combined photometric observations of K2-25 covering a total of 44 transits and spanning >2 yr, drawn from a mix of space-based telescopes (Spitzer Space Telescope and K2) and ground-based facilities (Las Cumbres Observatory Global Telescope network and MEarth). The transit photometry spanned 0.6-4.5 μm, which enabled our study of K2-25b's transmission spectrum. We combined and fit each data set at a common wavelength within a Markov Chain Monte Carlo framework, yielding consistent planet parameters. The resulting transit depths ruled out a solar-composition atmosphere for K2-25b for the range of expected planetary masses and equilibrium temperature at a >4σ confidence level, and are consistent with a flat transmission spectrum. Mass constraints and transit observations at a finer grid of wavelengths (e.g., from the Hubble Space Telescope) are needed to make more definitive statements about the presence of clouds or an atmosphere of high mean molecular weight. Our precise measurements of K2-25b's transit duration also enabled new constraints on the eccentricity of K2-25's orbit. We find K2-25b's orbit to be eccentric (e > 0.20) for all reasonable stellar densities and independent of the observation wavelength or instrument. The high eccentricity is suggestive of a complex dynamical history and motivates future searches for additional planets or stellar companions

    Tess hunt for young and maturing exoplanets (thyme). II. a 17 myr old transiting hot jupiter in the sco-cen association

    Get PDF
    We present the discovery of a transiting hot Jupiter orbiting HIP 67522 (T eff ∼ 5650 K; M ∗ ∼ 1.2M o˙) in the 10-20 Myr old Sco-Cen OB association. We identified the transits in the TESS data using our custom notch filter planet search pipeline and characterize the system with additional photometry from Spitzer; spectroscopy from SOAR/Goodman, SALT/HRS, LCOGT/NRES, and SMARTS/CHIRON; and speckle imaging from SOAR/HRCam. We model the photometry as a periodic Gaussian process with transits to account for stellar variability and find an orbital period of 6.9596+0.0000150-000016days and radius of10.02-0.53+0.54R⊕. We also identify a single transit of an additional candidate planet with radius 8.01-0.710.75R ⊕ that has an orbital period of ⪆23 days. The validated planet HIP 67522b is currently the youngest transiting hot Jupiter discovered and is an ideal candidate for transmission spectroscopy and radial velocity follow-up studies, while also demonstrating that some young giant planets either form in situ at small orbital radii or else migrate promptly from formation sites farther out in the disk

    Zodiacal Exoplanets in Time (ZEIT). VI. A Three-planet System in the Hyades Cluster Including an Earth-sized Planet

    Get PDF
    Planets in young clusters are powerful probes of the evolution of planetary systems. Here we report the discovery of three planets transiting EPIC 247589423, a late-K dwarf in the Hyades (≃800 Myr) cluster, and robust detection limits for additional planets in the system. The planets were identified from their K2 light curves as part of our survey of young clusters and star-forming regions. The smallest planet has a radius comparable to Earth (), making it one of the few Earth-sized planets with a known, young age. The two larger planets are likely a mini-Neptune and a super-Earth, with radii of 291+0.11-0.10and 1.45+0.11-0.08 , respectively. The predicted radial velocity signals from these planets are between 0.4 and 2 m s-1, achievable with modern precision RV spectrographs. Because the target star is bright (V = 11.2) and has relatively low-amplitude stellar variability for a young star (2-6 mmag), EPIC 247589423 hosts the best known planets in a young open cluster for precise radial velocity follow-up, enabling a robust test of earlier claims that young planets are less dense than their older counterparts
    corecore