2,636 research outputs found
Applying system dynamics to model advanced persistent threats
© 2019 Association for Computing Machinery. System dynamics (SD) concept has been successfully applied to analyze issues that are non-linear, complex, and dynamic in disciplines namely social sciences and technology. However, its application to cyber security issues especially threats that involves multiple variables interacting with the technical as well as the organizational domain is lacking. In this respect, Advanced Persistent Threat (APT) is regarded as a highly targeted and sophisticated attack using zero-day malware, stealth, and multiple advanced techniques to gain entry and maintain its presence inside organizational network unnoticed. Being a threat that exploits technical as well as organizational vulnerabilities, preventing it at the security perimeter and, detecting it once it enters the system is a challenge till date. To demonstrate the application of SD in identifying and analyzing the effect of each of the variables, we took the Equinox data breach as a case study. The variables leading to the breach were identified, entered into Vensim software and simulated to get the results. Through this exercise, we could identify seven key independent management variables for the technical security and three key independent variables for records breach. This research being the foremost study to apply SD to APT, we presume that by modelling APT attacks using SD through a case study this paper, thus provides insights into the dynamics of the threat. Furthermore, it suggests \u27what if\u27 strategies to minimize APT risks thereby reduce the extent of damages should an APT attack occur
Extending a Hippocampal Model for Navigation Around a Maze Generated from Real-World Data
An essential component in the formation of understanding is the ability to use past experience to comprehend the here and now, and to aid selection of future action. Past experience is stored as memories which are then available for recall at very short notice, allowing for understanding of short and long term action. Autobiographical memory (ABM) is a form of temporally organised memory and is the organisation of episodes and contextual information from an individual’s experience into a coherent narrative, which is key to a sense of self. Formation and recall of memories is essential for effective and adaptive behaviour in the world, providing contextual information necessary for planning actions and memory functions, such as event reconstruction. Here we tested and developed a previously defined computational memory model, based on hippocampal structure and function, as a first step towards developing a synthetic model of human ABM (SAM). The hippocampal model chosen has functions analogous to that of human ABM. We trained the model on real-world sensory data and demonstrate successful, biologically plausible memory formation and recall, in a navigational task. The hippocampal model will later be extended for application in a biologically inspired system for human-robot interaction
An interference-resilient IIoT solution for measuring the effectiveness of industrial processes
The development and deployment of the so-called Industrial Internet of Things (IIoT) have significantly increased the control and monitoring capabilities of companies, and thus their potential productivity. In this paper, we propose the use of Raspberry Pi devices in industrial environments to mea-sure productivity parameters. Our proposal can economically and efficiently gather data related with the availability and productivity of industrial machinery. However, since low-cost devices are prone to suffer the negative effects of electromagnetic interferences, we additionally propose an alternative to prevent signal alterations caused by them. More specifically, we propose a filtering mechanism called Smart Coded Filter (SCF), which eliminates wrong signals caused by electromagnetic interferences, and, therefore, highly improves the accuracy when estimating the availability metric. Results obtained demonstrate that our low-cost device provided with the SCF completely ignores 100% of wrong availability data, while reducing up to 70% the number of records stored into the database
Locally erasable couplers for optical device testing in silicon on insulator
Wafer scale testing is critical to reducing production costs and increasing production yield. Here we report a method that allows testing of individual optical components within a complex optical integrated circuit. The method is based on diffractive grating couplers, fabricated using lattice damage induced by ion implantation of germanium. These gratings can be erased via localised laser annealing, which is shown to reduce the outcoupling efficiency by over 20 dB after the device testing is completed. Laser annealing was achieved by employing a CW laser, operating at visible wavelengths thus reducing equipment costs and allowing annealing through thick oxide claddings. The process used also retains CMOS compatibility
Local factors have a greater influence on the abundance of alfalfa weevil and its larval parasitoids than landscape complexity in heterogeneous landscapes
Context The alfalfa weevil Hypera postica Gyllenhal (Coleoptera: Curculionidae) is one of the most destructive pests of alfalfa worldwide. Both local and landscape-scale factors can significantly infuence crop pests, natural enemies, and the efectiveness of biological control services, but the relative infuence of these factors is unclear.
Objectives We investigated the infuence of the local variables and surrounding landscape composition and configuration on the abundance of alfalfa weevil, and on the abundance and parasitism rates of its larval parasitoids, Bathyplectes spp.
Methods We sampled 65 commercial alfalfa fields along the Ebro Basin, Spain, over a period of 3 years, recording the field characteristics and landscape structure at three buffer radii of 250, 500 and 1000 m
from the center of each field.
Results The abundance of weevil larvae was positively associated with the field perimeter and with the uncut alfalfa surrounding the pipes of the sprinkler irrigation system, but only one configuration variable was positively correlated: the alfalfa edge density. No local characteristics or landscape structures were associated with the abundance of adult weevils. The abundance of Bathyplectes spp. adults was positively associated to local factors such as the densities of alfalfa weevils and aphids. Few landscape structure variables, such as alfalfa edge density and Simpson’s Diversity Index, had explanatory value only at 250 m buffer radius. The rate of larval parasitism was affected by local variables, such as alfalfa weevil abundance and field age.
Conclusion Our results provide, for the first time in the Mediterranean region and Europe, evidence of the relative importance of landscape structure and local factors on the abundance of the alfalfa weevil and its
larval parasitoids, Bathyplectes spp. The strongest infuences were based on local characteristics.Springer Nature; Spanish Government; Universitat de Lleida; Fundação para a Ciência e a Tecnologiainfo:eu-repo/semantics/publishedVersio
Electron transfer at the mineral/water interface: Selenium reduction by ferrous iron sorbed on clay
International audienceThe mobility and availability of the toxic metalloid selenium in the environment is largely controlled by sorption and redox reactions, which may proceed at temporal scales similar to that of subsurface water movement under saturated or unsaturated conditions. Since such waters are often anaerobic and rich in Fe2+, we investigated the long-term (≤ 1 month) kinetics of selenite (Se(IV)O3 -) sorption to montmorillonite in the presence of Fe2+ under anoxic conditions. A synthetic montmorillonite was used to eliminate the influence of structural Fe. In the absence of aqueous Fe2+, selenite was sorbed as outer-sphere sorption complex, covering only part of the positive edge sites, as verified by a structure-based MUSIC model and Se K-edge XAS (X-ray absorption spectroscopy). When selenite was added to montmorillonite previously equilibrated with Fe2+ solution however, slow reduction of Se and formation of a solid phase was observed with Se K-edge XANES (x-ray absorption near-edge spectroscopy) and EXAFS (extended x-ray absorption finestructure) spectroscopy. Iterative transformation factor analysis of XANES and EXAFS spectra suggested that only one Se reaction product formed, which was identified as nano-particulate Se(0). Even after one month, only 75% of the initially sorbed Se(IV) was reduced to this solid species. Mössbauer spectrometry revealed that before and after addition and reduction of Se, 5% of total sorbed Fe occurred as Fe(III) species on edge sites of montmorillonite (≈ 2 mmol kg-1). The only change observed after addition of Se was the formation of a new Fe(II) species (15%) attributed to the formation of an outer-sphere Fe(II)-Se sorption complex. The combined Mössbauer and XAS results hence clearly suggest that the Se and Fe redox reactions are not directly coupled. Based on the results of a companion paper, we hypothesize that the electrons produced in the absence of Se by oxidation of sorbed Fe(II) are stored, for example by formation of surface H2 species, and are then 3 available for the later Se(IV) reduction. The slow reaction rate indicates a diffusion controlled process. Homogeneous precipitation of an iron selenite was thermodynamically predicted and experimentally observed only in the absence of clay. Interestingly, half of Fe was oxidized in this precipitate (Mössbauer). Since DFT calculations predicted the oxidation of Fe at the water-FeSe solid interface only and not in the bulk phase, the average particle size of this precipitate does not exceed 2 nm. A comparison with the Mössbauer and XAS spectra of the clay samples demonstrates that such homogenous precipitation can be excluded as a mechanism for the observed slow Se reduction, emphasizing the role of abiotic, heterogeneous precipitation and reduction for the removal of Se from subsurface waters
Safflower seeds in the diet of feedlot lambs improved fat carcass, colour, and fatty acid profile of the meat
The aim of this study was to evaluate intake, performance, carcass characteristics and meat quality of lambs fed finishing diets containing 0%, 7.5% and 15% safflower seeds (Carthamus tinctorius) as a replacement for corn and soybean meal. Thirty-six male lambs with mean bodyweight of 17.9 ± 1.8 kg were randomly assigned to one of three treatments: C0: no safflower seeds, C7.5: 7.5%safflower seeds in diet (DM basis), and C15: 15% safflower seeds in diet (DM basis). The lambs were fed in pens of two and thus there were six replicates per treatment. Performance and carcass characteristics were not affected by including safflower seeds in their diet. Animals fed 7.5% safflower seeds had greater dry matter intake. There was a linear effect of increasing the redness (a*) of meat with the amount of safflower, where a mean of 15.77 was found for lambs that received the C15 diet. With increasing levels of safflower, the concentration of fatty acids C14:0, C17:0, and C22:1 increased. However, conjugated linoleic acid (CLA, C18:2) was reduced in lambs fed C15. A concentration of 0.461 g/100 g meat was observed for animals that consumed C7.5. Thus, lambs fed a diet containing 7.5% safflower had the greatest dry matter intake, carcass fat, and concentration of conjugated linoleic acid in their meat, and enhanced meat colour.Key words: conjugated linoleic acid, human health, lipid supplementation, oilseed
Numerical convergence of the block-maxima approach to the Generalized Extreme Value distribution
In this paper we perform an analytical and numerical study of Extreme Value
distributions in discrete dynamical systems. In this setting, recent works have
shown how to get a statistics of extremes in agreement with the classical
Extreme Value Theory. We pursue these investigations by giving analytical
expressions of Extreme Value distribution parameters for maps that have an
absolutely continuous invariant measure. We compare these analytical results
with numerical experiments in which we study the convergence to limiting
distributions using the so called block-maxima approach, pointing out in which
cases we obtain robust estimation of parameters. In regular maps for which
mixing properties do not hold, we show that the fitting procedure to the
classical Extreme Value Distribution fails, as expected. However, we obtain an
empirical distribution that can be explained starting from a different
observable function for which Nicolis et al. [2006] have found analytical
results.Comment: 34 pages, 7 figures; Journal of Statistical Physics 201
Quenching of Weak Interactions in Nucleon Matter
We have calculated the one-body Fermi and Gamow-Teller charge-current, and
vector and axial-vector neutral-current nuclear matrix elements in nucleon
matter at densities of 0.08, 0.16 and 0.24 fm and proton fractions
ranging from 0.2 to 0.5. The correlated states for nucleon matter are obtained
by operating on Fermi-gas states by a symmetrized product of pair correlation
operators determined from variational calculations with the Argonne v18 and
Urbana IX two- and three-nucleon interactions. The squares of the charge
current matrix elements are found to be quenched by 20 to 25 % by the
short-range correlations in nucleon matter. Most of the quenching is due to
spin-isospin correlations induced by the pion exchange interactions which
change the isospins and spins of the nucleons. A large part of it can be
related to the probability for a spin up proton quasi-particle to be a bare
spin up/down proton/neutron. We also calculate the matrix elements of the
nuclear Hamiltonian in the same correlated basis. These provide relatively mild
effective interactions which give the variational energies in the Hartree-Fock
approximation. The calculated two-nucleon effective interaction describes the
spin-isospin susceptibilities of nuclear and neutron matter fairly accurately.
However 3-body terms are necessary to reproduce the compressibility. All
presented results use the simple 2-body cluster approximation to calculate the
correlated basis matrix elements.Comment: submitted to PR
Boxy/peanut/X bulges, barlenses and the thick part of galactic bars: What are they and how did they form?
Bars have a complex three-dimensional shape. In particular their inner part
is vertically much thicker than the parts further out. Viewed edge-on, the
thick part of the bar is what is commonly known as a boxy-, peanut- or X- bulge
and viewed face-on it is referred to as a barlens. These components are due to
disc and bar instabilities and are composed of disc material. I review here
their formation, evolution and dynamics, using simulations, orbital structure
theory and comparisons to observations.Comment: 21 pages, 7 figures, invited review to appear in "Galactic Bulges",
E. Laurikainen, R. Peletier, D. Gadotti, (eds.), Springe
- …