10 research outputs found

    Towards the deformation quantization of linearized gravity

    Full text link
    We present a first attempt to apply the approach of deformation quantization to linearized Einstein's equations. We use the analogy with Maxwell equations to derive the field equations of linearized gravity from a modified Maxwell Lagrangian which allows the construction of a Hamiltonian in the standard way. The deformation quantization procedure for free fields is applied to this Hamiltonian. As a result we obtain the complete set of quantum states and its discrete spectrum.Comment: 13 pages, no figures **preliminary entry **

    Twist Deformations of the Supersymmetric Quantum Mechanics

    Full text link
    The N-extended Supersymmetric Quantum Mechanics is deformed via an abelian twist which preserves the super-Hopf algebra structure of its Universal Enveloping Superalgebra. Two constructions are possible. For even N one can identify the 1D N-extended superalgebra with the fermionic Heisenberg algebra. Alternatively, supersymmetry generators can be realized as operators belonging to the Universal Enveloping Superalgebra of one bosonic and several fermionic oscillators. The deformed system is described in terms of twisted operators satisfying twist-deformed (anti)commutators. The main differences between an abelian twist defined in terms of fermionic operators and an abelian twist defined in terms of bosonic operators are discussed.Comment: 18 pages; two references adde

    Star products made (somewhat) easier

    Full text link
    We develop an approach to the deformation quantization on the real plane with an arbitrary Poisson structure which based on Weyl symmetrically ordered operator products. By using a polydifferential representation for deformed coordinates x^j\hat x^j we are able to formulate a simple and effective iterative procedure which allowed us to calculate the fourth order star product (and may be extended to the fifth order at the expense of tedious but otherwise straightforward calculations). Modulo some cohomology issues which we do not consider here, the method gives an explicit and physics-friendly description of the star products.Comment: 20 pages, v2, v3: comments and references adde
    corecore