846 research outputs found
The monopole mass in the three-dimensional Georgi-Glashow model
We study the three-dimensional Georgi-Glashow model to demonstrate how
magnetic monopoles can be studied fully non-perturbatively in lattice Monte
Carlo simulations, without any assumptions about the smoothness of the field
configurations. We examine the apparent contradiction between the conjectured
analytic connection of the `broken' and `symmetric' phases, and the
interpretation of the mass (i.e., the free energy) of the fully quantised 't
Hooft-Polyakov monopole as an order parameter to distinguish the phases. We use
Monte Carlo simulations to measure the monopole free energy and its first
derivative with respect to the scalar mass. On small volumes we compare this to
semi-classical predictions for the monopole. On large volumes we show that the
free energy is screened to zero, signalling the formation of a confining
monopole condensate. This screening does not allow the monopole mass to be
interpreted as an order parameter, resolving the paradox.Comment: 12 pages, 7 figures, uses revtex. Minor changes made to the text to
match with the published version at
http://link.aps.org/abstract/PRD/v65/e12500
Photoionization of H<sub>2</sub> using the molecular R-matrix with time approach
We present results of the first calculations using the variational ab initio molecular R-matrix with time approach. We have calculated two and four-photon ionization cross sections for H2 and studied the effects of electron correlation and choice of the Gaussian atomic basis sets. Our results are compared with earlier calculations
Magnetic monopoles from gauge theory phase transitions
Thermal fluctuations of the gauge field lead to monopole formation at the
grand unified phase transition in the early Universe, even if the transition is
merely a smooth crossover. The dependence of the produced monopole density on
various parameters is qualitatively different from theories with global
symmetries, and the monopoles have a positive correlation at short distances.
The number density of monopoles may be suppressed if the grand unified symmetry
is only restored for a short time by, for instance, nonthermal symmetry
restoration after preheating.Comment: 5 pages, updated to match the version published in PRD
(http://link.aps.org/abstract/PRD/v68/e021301) on 11 July 200
Atomic and molecular suite of R-matrix codes for ultrafast dynamics in strong laser fields and electron/positron scattering
Synopsis: We describe and illustrate a number of recent developments of the atomic and molecular ab initio R-matrix suites for both time-dependent calculations of ultrafast laser-induced dynamics and time-independent calculations of photoionization and electron scattering
Recommended from our members
Atomic and molecular suite of R-matrix codes for ultrafast dynamics in strong laser fields and electron/positron scattering
We describe and illustrate a number of recent developments of the atomic and molecular ab initio R-matrix suites for both time-dependent calculations of ultrafast laser-induced dynamics and time-independentcalculations of photoionization and electron scattering. © 2019 Published under licence by IOP Publishing Ltd
Interactions between arbuscular mycorrhizal fungi and intraspecific competition affect size and size inequality of Plantago lanceolata L.
Intraspecific competition causes decreases in plant size and increases in size inequality. Arbuscular mycorrhizas usually increase the size and inequality of non-competing plants, but mycorrhizal effects often disappear when plants begin competing. We hypothesized that mycorrhizal effects on size inequality would be determined by the experimental conditions, and conducted simultaneous field and glasshouse experiments to investigate how AM fungi and intraspecific competition determine size inequality in Plantago lanceolata.
2 As predicted, plant size was reduced when plants were competing, in both field and controlled conditions. However, size inequality was unexpectedly reduced by competition. Plants may have competed in a symmetric fashion, probably for nutrients, rather than the more common situation, in which plant competition is strongly asymmetric.
3 Mycorrhizas had no effect on plant size or size inequality in competing plants in either field or controlled conditions, possibly because competition for nutrients was intense and negated any benefit the fungi could provide.
4 The effects of mycorrhizas on non-competing plants were also unexpected. In field-grown plants, AM fungi increased plant size, but decreased size inequality: mycorrhizal plants were more even in size, with few very small individuals. In glasshouse conditions, mycorrhizal colonization was extremely high, and was generally antagonistic, causing a reduction in plant size. Here, however, mycorrhizas caused an increase in size inequality, supporting our original hypothesis. This was because most plants were heavily colonized and small, but a few had low levels of colonization and grew relatively large.
5 This study has important implications for understanding the forces that structure plant communities. AM fungi can have a variety of effects on size inequality and thus potentially important influences on long-term plant population dynamics, by affecting the genetic contribution of individuals to the next generation. However, these effects differ, depending on whether plants are competing or not, the degree of mycorrhizal colonization and the responsiveness of the plant to different colonization densities
Resonance Effects in the Nonadiabatic Nonlinear Quantum Dimer
The quantum nonlinear dimer consisting of an electron shuttling between the
two sites and in weak interaction with vibrations, is studied numerically under
the application of a DC electric field. A field-induced resonance phenomenon
between the vibrations and the electronic oscillations is found to influence
the electronic transport greatly. For initially delocalization of the electron,
the resonance has the effect of a dramatic increase in the transport. Nonlinear
frequency mixing is identified as the main mechanism that influences transport.
A characterization of the frequency spectrum is also presented.Comment: 7 pages, 6 figure
Pinch Technique and the Batalin-Vilkovisky formalism
In this paper we take the first step towards a non-diagrammatic formulation
of the Pinch Technique. In particular we proceed into a systematic
identification of the parts of the one-loop and two-loop Feynman diagrams that
are exchanged during the pinching process in terms of unphysical ghost Green's
functions; the latter appear in the standard Slavnov-Taylor identity satisfied
by the tree-level and one-loop three-gluon vertex. This identification allows
for the consistent generalization of the intrinsic pinch technique to two
loops, through the collective treatment of entire sets of diagrams, instead of
the laborious algebraic manipulation of individual graphs, and sets up the
stage for the generalization of the method to all orders. We show that the task
of comparing the effective Green's functions obtained by the Pinch Technique
with those computed in the background field method Feynman gauge is
significantly facilitated when employing the powerful quantization framework of
Batalin and Vilkovisky. This formalism allows for the derivation of a set of
useful non-linear identities, which express the Background Field Method Green's
functions in terms of the conventional (quantum) ones and auxiliary Green's
functions involving the background source and the gluonic anti-field; these
latter Green's functions are subsequently related by means of a Schwinger-Dyson
type of equation to the ghost Green's functions appearing in the aforementioned
Slavnov-Taylor identity.Comment: 45 pages, uses axodraw; typos corrected, one figure changed, final
version to appear in Phys.Rev.
Subsurface Supergranular Vertical Flows as Measured Using Large Distance Separations in Time-Distance Helioseismology
As large--distance rays (say, 10\,-\,) approach the solar surface
approximately vertically, travel times measured from surface pairs for these
large separations are mostly sensitive to vertical flows, at least for shallow
flows within a few Mm of the solar surface. All previous analyses of
supergranulation have used smaller separations and have been hampered by the
difficulty of separating the horizontal and vertical flow components. We find
that the large separation travel times associated with supergranulation cannot
be studied using the standard phase-speed filters of time-distance
helioseismology. These filters, whose use is based upon a refractive model of
the perturbations, reduce the resultant travel time signal by at least an order
of magnitude at some distances. More effective filters are derived. Modeling
suggests that the center--annulus travel time difference
in the separation range \,-\, is insensitive to the
horizontally diverging flow from the centers of the supergranules and should
lead to a constant signal from the vertical flow. Our measurement of this
quantity, 5.1 \pm 0.1\secs, is constant over the distance range. This
magnitude of signal cannot be caused by the level of upflow at cell centers
seen at the photosphere of 10\ms extended in depth. It requires the vertical
flow to increase with depth. A simple Gaussian model of the increase with depth
implies a peak upward flow of 240\ms at a depth of 2.3\Mm and a peak
horizontal flow of 700\ms at a depth of 1.6\Mm.Comment: Solar Physics; 15 pages, 6 figure
- …