6 research outputs found
Hydroxyl radical consumption following photolysis of vapor-phase hydrogen peroxide at 266 nm: Implications for photofragmentation laser-induced fluorescence measurements of hydrogen peroxide
The decay of OH concentration following photolysis of room-temperature vapor-phase hydrogen peroxide is studied as a function of photolysis fluence at 266 nm in an open air environment. The rate of decay is found to increase with increasing photolysis fluence, i.e., with increasing number of photodissociated H2O2(g) molecules. Single-exponential functions approximate the OH concentration decay rather well, even for higher photolysis levels, and the decay time is shown to be inversely proportional to the H2O2(g) concentration. For fluences of about 450 mJ/cm(2) the difference between a single-exponential decay and measured data is becoming evident after approximately 150 mu s. Calculations based on a chemical kinetics model agree well with experimental data also for times > 150 mu s. By combining the model with measurements, the actual photolysis levels used in experiments are estimated. The best fit between measured data and the model suggests that about 1.1% of the H2O2(g) molecules are dissociated with a photolysis fluence of similar to 450 mJ/cm(2), in reasonable agreement with a Beer-Lambert based estimation. Excitation scans did not unfold any differences between OH spectra recorded at different photolysis fluences
Test-Retest Reliability of a Semi-Structured Interview to Aid in Pediatric Traumatic Brain Injury Diagnosis
Objective: Retrospective self-report is typically used for diagnosing previous pediatric traumatic brain injury (TBI). A new semi-structured interview instrument (New Mexico Assessment of Pediatric TBI; NewMAP TBI) investigated test-retest reliability for TBI characteristics in both the TBI that qualified for study inclusion and for lifetime history of TBI. Method: One-hundred and eight-four mTBI (aged 8-18), 156 matched healthy controls (HC), and their parents completed the NewMAP TBI within 11 days (subacute; SA) and 4 months (early chronic; EC) of injury, with a subset returning at 1 year (late chronic; LC). Results: The test-retest reliability of common TBI characteristics [loss of consciousness (LOC), post-traumatic amnesia (PTA), retrograde amnesia, confusion/disorientation] and post-concussion symptoms (PCS) were examined across study visits. Aside from PTA, binary reporting (present/absent) for all TBI characteristics exhibited acceptable (â„0.60) test-retest reliability for both Qualifying and Remote TBIs across all three visits. In contrast, reliability for continuous data (exact duration) was generally unacceptable, with LOC and PCS meeting acceptable criteria at only half of the assessments. Transforming continuous self-report ratings into discrete categories based on injury severity resulted in acceptable reliability. Reliability was not strongly affected by the parent completing the NewMAP TBI. Conclusions: Categorical reporting of TBI characteristics in children and adolescents can aid clinicians in retrospectively obtaining reliable estimates of TBI severity up to a year post-injury. However, test-retest reliability is strongly impacted by the initial data distribution, selected statistical methods, and potentially by patient difficulty in distinguishing among conceptually similar medical concepts (i.e., PTA vs. confusion). Copyright © INS. Published by Cambridge University Press, 2021.Immediate accessThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]