58 research outputs found

    Modeling of hydrodynamic cavitation reactors: a unified approach

    Get PDF
    An attempt has been made to present a unified theoretical model for the cavitating flow in a hydrodynamic cavitation reactor using the nonlinear continuum mixture model for two-phase flow as the basis. This model has been used to describe the radial motion of bubble in the cavitating flow in two geometries in hydrodynamic cavitation reactors, viz., a venturi tube and an orifice plate. Simulations of the bubble dynamics in a venturi flow demonstrate the stable oscillatory radial bubble motion due to a linear pressure gradient. Due to an additional pressure gradient due to turbulent velocity fluctuations the radial bubble motion in case of an orifice flow is a combination of both stable and oscillatory type. The results of numerical simulations have been explained on the basis of analogy between hydrodynamic cavitation and acoustic cavitation

    Cavitation reaction engineering

    No full text

    Hydrodynamic cavitation for sonochemical effects

    No full text
    A comparative study of hydrodynamic and acoustic cavitation has been made on the basis of numerical solutions of the Rayleigh-Plesset equation. The bubble/cavity behaviour has been studied under both acoustic and hydrodynamic cavitation conditions. The effect of varying pressure fields on the collapse of the cavity (sinusoidal for acoustic and linear for hydrodynamic) and also on the latter's dynamic behaviour has been studied. The variations of parameters such as initial cavity size, intensity of the acoustic field and irradiation frequency in the case of acoustic cavitation, and initial cavity size, final recovery pressure and time for pressure recovery in the case of hydrodynamic cavitation, have been found to have significant effects on cavity/bubble dynamics. The simulations reveal that the bubble/cavity collapsing behaviour in the case of hydrodynamic cavitation is accompanied by a large number of pressure pulses of relatively smaller magnitude, compared with just one or two pulses under acoustic cavitation. It has been shown that hydrodynamic cavitation offers greater control over operating parameters and the resultant cavitation intensity. Finally, a brief summary of the experimental results on the oxidation of aqueous KI solution with a hydrodynamic cavitation set-up is given which supports the conclusion of this numerical study. The methodology presented allows one to manipulate and optimise of specific process, either physical or chemical
    • …
    corecore