4 research outputs found

    On Eigenvalues of the sum of two random projections

    Full text link
    We study the behavior of eigenvalues of matrix P_N + Q_N where P_N and Q_N are two N -by-N random orthogonal projections. We relate the joint eigenvalue distribution of this matrix to the Jacobi matrix ensemble and establish the universal behavior of eigenvalues for large N. The limiting local behavior of eigenvalues is governed by the sine kernel in the bulk and by either the Bessel or the Airy kernel at the edge depending on parameters. We also study an exceptional case when the local behavior of eigenvalues of P_N + Q_N is not universal in the usual sense.Comment: 14 page

    Noncolliding Squared Bessel Processes

    Full text link
    We consider a particle system of the squared Bessel processes with index ν>−1\nu > -1 conditioned never to collide with each other, in which if −1<ν<0-1 < \nu < 0 the origin is assumed to be reflecting. When the number of particles is finite, we prove for any fixed initial configuration that this noncolliding diffusion process is determinantal in the sense that any multitime correlation function is given by a determinant with a continuous kernel called the correlation kernel. When the number of particles is infinite, we give sufficient conditions for initial configurations so that the system is well defined. There the process with an infinite number of particles is determinantal and the correlation kernel is expressed using an entire function represented by the Weierstrass canonical product, whose zeros on the positive part of the real axis are given by the particle-positions in the initial configuration. From the class of infinite-particle initial configurations satisfying our conditions, we report one example in detail, which is a fixed configuration such that every point of the square of positive zero of the Bessel function JνJ_{\nu} is occupied by one particle. The process starting from this initial configuration shows a relaxation phenomenon converging to the stationary process, which is determinantal with the extended Bessel kernel, in the long-term limit.Comment: v3: LaTeX2e, 26 pages, no figure, corrections made for publication in J. Stat. Phy

    Determinantal process starting from an orthogonal symmetry is a Pfaffian process

    Full text link
    When the number of particles NN is finite, the noncolliding Brownian motion (BM) and the noncolliding squared Bessel process with index ν>−1\nu > -1 (BESQ(ν)^{(\nu)}) are determinantal processes for arbitrary fixed initial configurations. In the present paper we prove that, if initial configurations are distributed with orthogonal symmetry, they are Pfaffian processes in the sense that any multitime correlation functions are expressed by Pfaffians. The 2×22 \times 2 skew-symmetric matrix-valued correlation kernels of the Pfaffians processes are explicitly obtained by the equivalence between the noncolliding BM and an appropriate dilatation of a time reversal of the temporally inhomogeneous version of noncolliding BM with finite duration in which all particles start from the origin, Nδ0N \delta_0, and by the equivalence between the noncolliding BESQ(ν)^{(\nu)} and that of the noncolliding squared generalized meander starting from Nδ0N \delta_0.Comment: v2: AMS-LaTeX, 17 pages, no figure, corrections made for publication in J.Stat.Phy
    corecore