18 research outputs found

    Photoinduced electron transfer in singly labeled thiouredopyrenetrisulfonate azurin derivatives

    Get PDF
    AbstractA novel method for the initiation of intramolecular electron transfer reactions in azurin is reported. The method is based on laser photoexcitation of covalently attached thiouredopyrenetrisulfonate (TUPS), the reaction that generates the low potential triplet state of the dye with high quantum efficiency. TUPS derivatives of azurin, singly labeled at specific lysine residues, were prepared and purified to homogeneity by ion exchange HPLC. Transient absorption spectroscopy was used to directly monitor the rates of the electron transfer reaction from the photoexcited triplet state of TUPS to Cu(II) and the back reaction from Cu(I) to the oxidized dye. For all singly labeled derivatives, the rate constants of copper ion reduction were one or two orders of magnitude larger than for its reoxidation, consistent with the larger thermodynamic driving force for the former process. Using 3-D coordinates of the crystal structure of Pseudomonas aeruginosa azurin and molecular structure calculation of the TUPS modified proteins, electron transfer pathways were calculated. Analysis of the results revealed a good correlation between separation distance from donor to Cu ligating atom (His-N or Cys-S) and the observed rate constants of Cu(II) reduction

    Comparison of energization of complex I in membrane particles from Paracoccus denitrificans

    Get PDF
    AbstractThe results of preliminary studies of the effects of energization on the catalytic and EPR properties of complex I in tightly coupled membrane vesicles of Paracoccus denitrificans (SPP) are presented. They are compared to those observed in submitochondrial particles from bovine heart (SMP). All signs of energization of complex I detected by EPR in SMP (uncoupler-sensitive splitting of the gz lines of the clusters 2 and a broadening of their gxy lines, a fast-relaxing, piericidin-sensitive ubiquinone-radical signal, and a broad signal around g = 1.94) were also observed with the bacterial enzyme. There were some prominent differences, though. The signal of the fast-relaxing radicals could be evoked both in the presence or absence of reduced clusters 2, suggesting that enhancement of its spin-relaxation rate is caused by coupling to another paramagnet. The signal was hardly affected by the presence of gramicidin. The slow-relaxing radical signal did not disappear upon anaerobiosis, but was detectable for at least another 30 s. The fast-relaxing signal vanished immediately upon anaerobiosis. The activity of the bacterial enzyme during oxidation of NADH by oxygen or reduction of NAD induced by succinate oxidation, was 5–6 times higher than that of the mitochondrial enzyme. Unlike the mitochondrial enzyme, the bacterial enzyme was not inactivated by incubation at 35°C. The spin concentration of the NADH-reducible [2Fe–2S] cluster (1b) was half that of the clusters 2, indicating no difference with the mitochondrial enzyme
    corecore