788 research outputs found

    Future Prospects: Deep Imaging of Galaxy Outskirts using Telescopes Large and Small

    Full text link
    The Universe is almost totally unexplored at low surface brightness levels. In spite of great progress in the construction of large telescopes and improvements in the sensitivity of detectors, the limiting surface brightness of imaging observations has remained static for about forty years. Recent technical advances have at last begun to erode the barriers preventing progress. In this Chapter we describe the technical challenges to low surface brightness imaging, describe some solutions, and highlight some relevant observations that have been undertaken recently with both large and small telescopes. Our main focus will be on discoveries made with the Dragonfly Telephoto Array (Dragonfly), which is a new telescope concept designed to probe the Universe down to hitherto unprecedented low surface brightness levels. We conclude by arguing that these discoveries are probably only scratching the surface of interesting phenomena that are observable when the Universe is explored at low surface brightness levels.Comment: 27 pages, 10 figures, Invited review, Book chapter in "Outskirts of Galaxies", Eds. J. H. Knapen, J. C. Lee and A. Gil de Paz, Astrophysics and Space Science Library, Springer, in pres

    Sedimentation record in the Konkan-Kerala Basin: implications for the evolution of the Western Ghats and the Western Indian passive margin

    Get PDF
    The Konkan and Kerala Basins constitute a major depocentre for sediment from the onshore hinterland of Western India and as such provide a valuable record of the timing and magnitude of Cenozoic denudation along the continental margin. This paper presents an analysis of sedimentation in the Konkan-Kerala Basin, coupledwith a mass balance study, and numerical modelling of flexural responses to onshore denudational unloading and o¡shore sediment loading in order to test competing conceptual models for the development of high-elevation passive margins. The Konkan-Kerala Basin contains an estimated 109,000 km<sup>3</sup>; of Cenozoic clastic sediment, a volume difficult to reconcile with the denudation of a downwarped rift flank onshore, and more consistent with denudation of an elevated rift flank. We infer from modelling of the isostatic response of the lithosphere to sediment loading offshore and denudation onshore that flexure is an important component in the development of the Western Indian Margin.There is evidence for two major pulses in sedimentation: an early phase in the Palaeocene, and a second beginning in the Pliocene. The Palaeocene increase in sedimentation can be interpreted in terms of a denudational response to the rifting between India and the Seychelles, whereas the mechanism responsible for the Pliocene pulse is more enigmatic

    Reproductive health operations research, 1995–1998

    Get PDF
    This book presents in-depth reports on promising new interventions that have been developed and important programmatic changes that have been achieved by operations research in Latin America between 1995 and 1998. The INOPAL III project has made advances in five areas including access and quality of services, integration of family planning and other reproductive health services, financial sustainability, post-abortion care, and emergency contraception. Each of these topics are represented by at least three studies conducted in two or more countries. The operations research projects discussed under each topic are not replications of a single study. They use different research designs and address different questions. Nevertheless, when taken together, they provide managers and decision-makers with a body of programmatically relevant information on each broad topic covered

    Strong-correlation effects in Born effective charges

    Full text link
    Large values of Born effective charges are generally considered as reliable indicators of the genuine tendency of an insulator towards ferroelectric instability. However, these quantities can be very much influenced by strong electron correlation and metallic behavior, which are not exclusive properties of ferroelectric materials. In this paper we compare the Born effective charges of some prototypical ferroelectrics with those of magnetic, non-ferroelectric compounds using a novel, self-interaction free methodology that improves on the local-density approximation description of the electronic properties. We show that the inclusion of strong-correlation effects systermatically reduces the size of the Born effective charges and the electron localization lengths. Furthermore we give an interpretation of the Born effective charges in terms of band energy structure and orbital occupations which can be used as a guideline to rationalize their values in the general case.Comment: 10 pages, 4 postscript figure

    Particle Physics Approach to Dark Matter

    Full text link
    We review the main proposals of particle physics for the composition of the cold dark matter in the universe. Strong axion contribution to cold dark matter is not favored if the Peccei-Quinn field emerges with non-zero value at the end of inflation and the inflationary scale is superheavy since, under these circumstances, it leads to unacceptably large isocurvature perturbations. The lightest neutralino is the most popular candidate constituent of cold dark matter. Its relic abundance in the constrained minimal supersymmetric standard model can be reduced to acceptable values by pole annihilation of neutralinos or neutralino-stau coannihilation. Axinos can also contribute to cold dark matter provided that the reheat temperature is adequately low. Gravitinos can constitute the cold dark matter only in limited regions of the parameter space. We present a supersymmetric grand unified model leading to violation of Yukawa unification and, thus, allowing an acceptable b-quark mass within the constrained minimal supersymmetric standard model with mu>0. The model possesses a wide range of parameters consistent with the data on the cold dark matter abundance as well as other phenomenological constraints. Also, it leads to a new version of shifted hybrid inflation.Comment: 32 pages including 6 figures, uses svmult.cls, some clarifications added, lectures given at the Third Aegean Summer School "The Invisible Universe: Dark Matter and Dark Energy", 26 September-1 October 2005, Karfas, Island of Chios, Greece (to appear in the proceedings

    Higgs Scalars in the Minimal Non-minimal Supersymmetric Standard Model

    Get PDF
    We consider the simplest and most economic version among the proposed non-minimal supersymmetric models, in which the ÎĽ\mu-parameter is promoted to a singlet superfield, whose all self-couplings are absent from the renormalizable superpotential. Such a particularly simple form of the renormalizable superpotential may be enforced by discrete RR-symmetries which are extended to the gravity-induced non-renormalizable operators as well. We show explicitly that within the supergravity-mediated supersymmetry-breaking scenario, the potentially dangerous divergent tadpoles associated with the presence of the gauge singlet first appear at loop levels higher than 5 and therefore do not destabilize the gauge hierarchy. The model provides a natural explanation for the origin of the ÎĽ\mu-term, without suffering from the visible axion or the cosmological domain-wall problem. Focusing on the Higgs sector of this minimal non-minimal supersymmetric standard model, we calculate its effective Higgs potential by integrating out the dominant quantum effects due to stop squarks. We then discuss the phenomenological implications of the Higgs scalars predicted by the theory for the present and future high-energy colliders. In particular, we find that our new minimal non-minimal supersymmetric model can naturally accommodate a relatively light charged Higgs boson, with a mass close to the present experimental lower bound.Comment: 63 pages (12 figures), extended versio
    • …
    corecore