306 research outputs found
Telomere length heterogeneity in placenta revealed with high-resolution telomere length analysis
Introduction
Telomeres, are composed of tandem repeat sequences located at the ends of chromosomes and are required to maintain genomic stability. Telomeres can become shorter due to cell division and specific lifestyle factors. Critically shortened telomeres are linked to cellular dysfunction, senescence and aging. A number of studies have used low resolution techniques to assess telomere length in the placenta. In this study, we applied Single Telomere Length Analysis (STELA) which provides high-resolution chromosome specific telomere length profiles to ask whether we could obtain more detailed information on the length of individual telomeres in the placenta.
Methods
Term placentas (37–42 weeks) were collected from women delivering at University Hospital of Wales or Royal Gwent Hospital within 2 h of delivery. Multiple telomere-length distributions were determined using STELA. Intraplacental variation of telomere length was analysed (N = 5). Telomere length distributions were compared between labouring (N = 10) and non-labouring (N = 11) participants. Finally, telomere length was compared between female (N = 17) and male (N = 20) placenta.
Results
There were no significant influences of sampling site, mode of delivery or foetal sex on the telomere-length distributions obtained. The mean telomere length was 7.7 kb ranging from 5.0 kb to 11.7 kb across all samples (N = 42) and longer compared with other human tissues at birth. STELA also revealed considerable telomere length heterogeneity within samples.
Conclusions
We have shown that STELA can be used to study telomere length homeostasis in the placenta regardless of sampling site, mode of delivery and foetal sex. Moreover, as each amplicon is derived from a single telomeric molecule, from a single cell, STELA can reveal the full detail of telomere-length distributions, including telomeres within the length ranges observed in senescent cells. STELA thus provides a new tool to interrogate the relationship between telomere length and pregnancy complications linked to placental dysfunction
Telomere length heterogeneity in placenta revealed with high-resolution telomere length analysis
Introduction
Telomeres, are composed of tandem repeat sequences located at the ends of chromosomes and are required to maintain genomic stability. Telomeres can become shorter due to cell division and specific lifestyle factors. Critically shortened telomeres are linked to cellular dysfunction, senescence and aging. A number of studies have used low resolution techniques to assess telomere length in the placenta. In this study, we applied Single Telomere Length Analysis (STELA) which provides high-resolution chromosome specific telomere length profiles to ask whether we could obtain more detailed information on the length of individual telomeres in the placenta.
Methods
Term placentas (37–42 weeks) were collected from women delivering at University Hospital of Wales or Royal Gwent Hospital within 2 h of delivery. Multiple telomere-length distributions were determined using STELA. Intraplacental variation of telomere length was analysed (N = 5). Telomere length distributions were compared between labouring (N = 10) and non-labouring (N = 11) participants. Finally, telomere length was compared between female (N = 17) and male (N = 20) placenta.
Results
There were no significant influences of sampling site, mode of delivery or foetal sex on the telomere-length distributions obtained. The mean telomere length was 7.7 kb ranging from 5.0 kb to 11.7 kb across all samples (N = 42) and longer compared with other human tissues at birth. STELA also revealed considerable telomere length heterogeneity within samples.
Conclusions
We have shown that STELA can be used to study telomere length homeostasis in the placenta regardless of sampling site, mode of delivery and foetal sex. Moreover, as each amplicon is derived from a single telomeric molecule, from a single cell, STELA can reveal the full detail of telomere-length distributions, including telomeres within the length ranges observed in senescent cells. STELA thus provides a new tool to interrogate the relationship between telomere length and pregnancy complications linked to placental dysfunction
Recent advance in high manufacturing readiness level and high temperature CMOS mixed-signal integrated circuits on silicon carbide
A high manufacturing readiness level silicon carbide (SiC) CMOS technology is presented. The unique process flow enables the monolithic integration of pMOS and nMOS transistors with passive circuit elements capable of operation at temperatures of 300 °C and beyond. Critical to this functionality is the behaviour of the gate dielectric and data for high temperature capacitance–voltage measurements are reported for SiO2/4H-SiC (n and p type) MOS structures. In addition, a summary of the long term reliability for a range of structures including contact chains to both n-type and p-type SiC, as well as simple logic circuits is presented, showing function after 2000 h at 300 °C. Circuit data is also presented for the performance of digital logic devices, a 4 to 1 analogue multiplexer and a configurable timer operating over a wide temperature range. A high temperature micro-oven system has been utilised to enable the high temperature testing and stressing of units assembled in ceramic dual in line packages, including a high temperature small form-factor SiC based bridge leg power module prototype, operated for over 1000 h at 300 °C. The data presented show that SiC CMOS is a key enabling technology in high temperature integrated circuit design. In particular it provides the ability to realise sensor interface circuits capable of operating above 300 °C, accommodate shifts in key parameters enabling deployment in applications including automotive, aerospace and deep well drilling
Spatial and temporal variations in Pb concentrations and isotopic composition in road dust, farmland soil and vegetation in proximity to roads since cessation of use of leaded petrol in the UK
Results are presented for a study of spatial distributions and temporal trends in concentrations of lead (Pb) from different sources in soil and vegetation of an arable farm in central Scotland in the decade since the use of leaded petrol was terminated. Isotopic analyses revealed that in all of the samples analysed, the Pb conformed to a binary mixture of petrol Pb and Pb from industrial or indigenous geological sources and that locally enhanced levels of petrol Pb were restricted to within 10 m of a motorway and 3 m of a minor road. Overall, the dominant source of Pb was historical emissions from nearby industrial areas. There was no discernible change in concentration or isotopic composition of Pb in surface soil or vegetation over the decade since the ban on the sale of leaded petrol. There was an order of magnitude decrease in Pb concentrations in road dust over the study period, but petrol Pb persisted at up to 43% of the total Pb concentration in 2010. Similar concentrations and spatial distributions of petrol Pb and non petrol Pb in vegetation in both 2001 and 2010, with enhanced concentrations near roads, suggested that redistribution of previously deposited material has operated continuously over that period, maintaining a transfer pathway of Pb into the biosphere. The results for vegetation and soil transects near minor roads provided evidence of a non petrol Pb source associated with roads/traffic, but surface soil samples from the vicinity of a motorway failed to show evidence of such a source
Two-soliton collisions in a near-integrable lattice system
We examine collisions between identical solitons in a weakly perturbed
Ablowitz-Ladik (AL) model, augmented by either onsite cubic nonlinearity (which
corresponds to the Salerno model, and may be realized as an array of strongly
overlapping nonlinear optical waveguides), or a quintic perturbation, or both.
Complex dependences of the outcomes of the collisions on the initial phase
difference between the solitons and location of the collision point are
observed. Large changes of amplitudes and velocities of the colliding solitons
are generated by weak perturbations, showing that the elasticity of soliton
collisions in the AL model is fragile (for instance, the Salerno's perturbation
with the relative strength of 0.08 can give rise to a change of the solitons'
amplitudes by a factor exceeding 2). Exact and approximate conservation laws in
the perturbed system are examined, with a conclusion that the small
perturbations very weakly affect the norm and energy conservation, but
completely destroy the conservation of the lattice momentum, which is explained
by the absence of the translational symmetry in generic nonintegrable lattice
models. Data collected for a very large number of collisions correlate with
this conclusion. Asymmetry of the collisions (which is explained by the
dependence on the location of the central point of the collision relative to
the lattice, and on the phase difference between the solitons) is investigated
too, showing that the nonintegrability-induced effects grow almost linearly
with the perturbation strength. Different perturbations (cubic and quintic
ones) produce virtually identical collision-induced effects, which makes it
possible to compensate them, thus finding a special perturbed system with
almost elastic soliton collisions.Comment: Phys. Rev. E, in pres
(Borel) convergence of the variationally improved mass expansion and the O(N) Gross-Neveu model mass gap
We reconsider in some detail a construction allowing (Borel) convergence of
an alternative perturbative expansion, for specific physical quantities of
asymptotically free models. The usual perturbative expansions (with an explicit
mass dependence) are transmuted into expansions in 1/F, where
for while for m \lsim \Lambda,
being the basic scale and given by renormalization group
coefficients. (Borel) convergence holds in a range of which corresponds to
reach unambiguously the strong coupling infrared regime near , which
can define certain "non-perturbative" quantities, such as the mass gap, from a
resummation of this alternative expansion. Convergence properties can be
further improved, when combined with expansion (variationally improved
perturbation) methods. We illustrate these results by re-evaluating, from
purely perturbative informations, the O(N) Gross-Neveu model mass gap, known
for arbitrary from exact S matrix results. Comparing different levels of
approximations that can be defined within our framework, we find reasonable
agreement with the exact result.Comment: 33 pp., RevTeX4, 6 eps figures. Minor typos, notation and wording
corrections, 2 references added. To appear in Phys. Rev.
Rare charm meson decays D->Pl^+l^- and c->ul^+l^- in SM and MSSM
We study the nine possible rare charm meson decays D->Pl^+l^-
(P=pi,K,eta,eta') using the Heavy Meson Chiral Lagrangians and find them to be
dominated by the long distance contributions. The decay D^+ -> pi^+l^+l^- with
the branching ratio 1*10^(-6) is expected to have the best chances for an early
experimental discovery. The short distance contribution in the five Cabibbo
suppressed channels arises via the c->ul^+l^- transition; we find that this
contribution is detectable only in the D->pi l^+l^- decay, where it dominates
the differential spectrum at high-q^2. The general Minimal Supersymmetric
Standard Model can enhance the c->ul^+l^- rate by up to an order of magnitude;
its effect on the D->Pl^+l^- rates is small since the c->ul^+l^- enhancement is
sizable in low-q^2 region, which is inhibited in the hadronic decay.Comment: 17 page
A radium assay technique using hydrous titanium oxide adsorbent for the Sudbury Neutrino Observatory
As photodisintegration of deuterons mimics the disintegration of deuterons by
neutrinos, the accurate measurement of the radioactivity from thorium and
uranium decay chains in the heavy water in the Sudbury Neutrino Observatory
(SNO) is essential for the determination of the total solar neutrino flux. A
radium assay technique of the required sensitivity is described that uses
hydrous titanium oxide adsorbent on a filtration membrane together with a
beta-alpha delayed coincidence counting system. For a 200 tonne assay the
detection limit for 232Th is a concentration of 3 x 10^(-16) g Th/g water and
for 238U of 3 x 10^(-16) g U/g water. Results of assays of both the heavy and
light water carried out during the first two years of data collection of SNO
are presented.Comment: 12 pages, 4 figure
Measurement of the scintillation time spectra and pulse-shape discrimination of low-energy beta and nuclear recoils in liquid argon with DEAP-1
The DEAP-1 low-background liquid argon detector was used to measure
scintillation pulse shapes of electron and nuclear recoil events and to
demonstrate the feasibility of pulse-shape discrimination (PSD) down to an
electron-equivalent energy of 20 keV.
In the surface dataset using a triple-coincidence tag we found the fraction
of beta events that are misidentified as nuclear recoils to be (90% C.L.) for energies between 43-86 keVee and for a nuclear recoil
acceptance of at least 90%, with 4% systematic uncertainty on the absolute
energy scale. The discrimination measurement on surface was limited by nuclear
recoils induced by cosmic-ray generated neutrons. This was improved by moving
the detector to the SNOLAB underground laboratory, where the reduced background
rate allowed the same measurement with only a double-coincidence tag.
The combined data set contains events. One of those, in the
underground data set, is in the nuclear-recoil region of interest. Taking into
account the expected background of 0.48 events coming from random pileup, the
resulting upper limit on the electronic recoil contamination is
(90% C.L.) between 44-89 keVee and for a nuclear recoil
acceptance of at least 90%, with 6% systematic uncertainty on the absolute
energy scale.
We developed a general mathematical framework to describe PSD parameter
distributions and used it to build an analytical model of the distributions
observed in DEAP-1. Using this model, we project a misidentification fraction
of approx. for an electron-equivalent energy threshold of 15 keV for
a detector with 8 PE/keVee light yield. This reduction enables a search for
spin-independent scattering of WIMPs from 1000 kg of liquid argon with a
WIMP-nucleon cross-section sensitivity of cm, assuming
negligible contribution from nuclear recoil backgrounds.Comment: Accepted for publication in Astroparticle Physic
Neutrino Cooling of Neutron Stars. Medium effects
This review demonstrates that neutrino emission from dense hadronic component
in neutron stars is subject of strong modifications due to collective effects
in the nuclear matter. With the most important in-medium processes incorporated
in the cooling code an overall agreement with available soft X ray data can be
easily achieved. With these findings so called "standard" and "non-standard"
cooling scenarios are replaced by one general "nuclear medium cooling scenario"
which relates slow and rapid neutron star coolings to the star masses (interior
densities). In-medium effects take important part also at early hot stage of
neutron star evolution decreasing the neutrino opacity for less massive and
increasing for more massive neutron stars. A formalism for calculation of
neutrino radiation from nuclear matter is presented that treats on equal
footing one-nucleon and multiple-nucleon processes as well as reactions with
resonance bosons and condensates. Cooling history of neutron stars with quark
cores is also discussed.Comment: To be published in "Physics of Neutron Star Interiors", Eds. D.
Blaschke, N.K. Glendenning, A. Sedrakian, Springer, Heidelberg (2001
- …