35 research outputs found

    Atomic layer deposition of NiO applied in a monolithic perovskite/PERC tandem cell

    Get PDF
    Monolithic perovskite/silicon tandem photovoltaics have fueled major research efforts as well as gaining rapid industrial interest. So far, most of the literature has focused on the use of currently more expensive silicon heterojunction bottom cell technology. This work demonstrates a perovskite/silicon tandem solar cell based on the industrially dominant passivated emitter and rear cell (PERC) technology. In detail, we investigate a tunnel recombination junction (TRJ) consisting of ITO/NiO/2-(9H-carbazol-9-yl)ethyl] phosphonic acid (2PACz) and compare it with an ITO/2PACz TRJ. Specifically, the NiO layer is deposited by atomic layer deposition (ALD). Although ITO/2PACz-based tandem devices can reach more than 24% conversion efficiency, we observe that they suffer from a large spread in photovoltaic parameters due to electrical shunts in the perovskite top cell, caused by the inhomogeneity of the 2PACz layer on ITO. Instead, when ALD NiO is sandwiched between 2PACz and ITO, the surface coverage of 2PACz improves and the yield of the devices, in terms of all device parameters, also improves, i.e., the standard deviation decreases from 4.6% with ITO/2PACz to 2.0% with ITO/NiO/2PACz. In conclusion, thanks to the presence of NiO, the TRJ consisting of ITO/NiO/2PACz leads to a 23.7% efficient tandem device with narrow device efficiency distribution

    Meissner effect, Spin Meissner effect and charge expulsion in superconductors

    Full text link
    The Meissner effect and the Spin Meissner effect are the spontaneous generation of charge and spin current respectively near the surface of a metal making a transition to the superconducting state. The Meissner effect is well known but, I argue, not explained by the conventional theory, the Spin Meissner effect has yet to be detected. I propose that both effects take place in all superconductors, the first one in the presence of an applied magnetostatic field, the second one even in the absence of applied external fields. Both effects can be understood under the assumption that electrons expand their orbits and thereby lower their quantum kinetic energy in the transition to superconductivity. Associated with this process, the metal expels negative charge from the interior to the surface and an electric field is generated in the interior. The resulting charge current can be understood as arising from the magnetic Lorentz force on radially outgoing electrons, and the resulting spin current can be understood as arising from a spin Hall effect originating in the Rashba-like coupling of the electron magnetic moment to the internal electric field. The associated electrodynamics is qualitatively different from London electrodynamics, yet can be described by a small modification of the conventional London equations. The stability of the superconducting state and its macroscopic phase coherence hinge on the fact that the orbital angular momentum of the carriers of the spin current is found to be exactly /2\hbar/2, indicating a topological origin. The simplicity and universality of our theory argue for its validity, and the occurrence of superconductivity in many classes of materials can be understood within our theory.Comment: Submitted to SLAFES XX Proceeding

    Global maps of soil temperature.

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km <sup>2</sup> resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km <sup>2</sup> pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Sub-nanometer dimensions control of core/shell nanoparticles prepared by atomic layer deposition

    No full text
    Bimetallic core/shell nanoparticles (NPs) are the subject of intense research due to their unique electronic, optical and catalytic properties. Accurate and independent control over the dimensions of both core and shell would allow for unprecedented catalytic performance. Here, we demonstrate that both core and shell dimensions of Pd/Pt core/shell nanoparticles (NPs) supported on Al2O3 substrates can be controlled at the sub-nanometer level by using a novel strategy based on atomic layer deposition (ALD). From the results it is derived that the main conditions for accurate dimension control of these core/shell NPs are: (i) a difference in surface energy between the deposited core metal and the substrate to obtain island growth; (ii) a process yielding linear growth of the NP cores with ALD cycles to obtain monodispersed NPs with a narrow size distribution; (iii) a selective ALD process for the shell metal yielding a linearly increasing thickness to obtain controllable shell growth exclusively on the cores. For Pd/Pt core/shell NPs it is found that a minimum core diameter of 1 nm exists above which the NP cores are able to catalytically dissociate the precursor molecules for shell growth. In addition, initial studies on the stability of these core/shell NPs have been carried out, and it has been demonstrated that core/shell NPs can be deposited by ALD on high aspect ratio substrates such as nanowire arrays. These achievements show therefore that ALD has significant potential for the preparation of tuneable heterogeneous catalyst systems

    Sub-nanometer dimensions control of core/shell nanoparticles prepared by atomic layer deposition

    No full text
    Bimetallic core/shell nanoparticles (NPs) are the subject of intense research due to their unique electronic, optical and catalytic properties. Accurate and independent control over the dimensions of both core and shell would allow for unprecedented catalytic performance. Here, we demonstrate that both core and shell dimensions of Pd/Pt core/shell nanoparticles (NPs) supported on Al2O3 substrates can be controlled at the sub-nanometer level by using a novel strategy based on atomic layer deposition (ALD). From the results it is derived that the main conditions for accurate dimension control of these core/shell NPs are: (i) a difference in surface energy between the deposited core metal and the substrate to obtain island growth; (ii) a process yielding linear growth of the NP cores with ALD cycles to obtain monodispersed NPs with a narrow size distribution; (iii) a selective ALD process for the shell metal yielding a linearly increasing thickness to obtain controllable shell growth exclusively on the cores. For Pd/Pt core/shell NPs it is found that a minimum core diameter of 1 nm exists above which the NP cores are able to catalytically dissociate the precursor molecules for shell growth. In addition, initial studies on the stability of these core/shell NPs have been carried out, and it has been demonstrated that core/shell NPs can be deposited by ALD on high aspect ratio substrates such as nanowire arrays. These achievements show therefore that ALD has significant potential for the preparation of tuneable heterogeneous catalyst systems

    Uniform atomic layer deposition of Al2O3 on graphene by reversible hydrogen plasma functionalization

    Get PDF
    A novel method to form ultrathin, uniform Al2O3 layers on graphene using reversible hydrogen plasma functionalization followed by atomic layer deposition (ALD) is presented. ALD on pristine graphene is known to be a challenge due to the absence of dangling bonds, leading to nonuniform film coverage. We show that hydrogen plasma functionalization of graphene leads to uniform ALD of closed Al2O3 films down to 8 nm in thickness. Hall measurements and Raman spectroscopy reveal that the hydrogen plasma functionalization is reversible upon Al2O3 ALD and subsequent annealing at 400 °C and in this way does not deteriorate the graphene’s charge carrier mobility. This is in contrast with oxygen plasma functionalization, which can lead to a uniform 5 nm thick closed film, but which is not reversible and leads to a reduction of the charge carrier mobility. Density functional theory (DFT) calculations attribute the uniform growth on both H2 and O2 plasma functionalized graphene to the enhanced adsorption of trimethylaluminum (TMA) on these surfaces. A DFT analysis of the possible reaction pathways for TMA precursor adsorption on hydrogenated graphene predicts a binding mechanism that cleans off the hydrogen functionalities from the surface, which explains the observed reversibility of the hydrogen plasma functionalization upon Al2O3 ALD

    Atomic layer deposition of HfO2 using HfCp(NMe2)3 and O2 plasma

    Get PDF
    HfO2 thin films were prepared by plasma-enhanced atomic layer deposition using a cyclopentadienyl-alkylamido precursor [HfCp(NMe2)3, HyALD™] and an O2 plasma over a temperature range of 150–400 °C at a growth per cycle around 1.1 Å/cycle. The high purity of the films was demonstrated by x-ray photoelectron spectroscopy and elastic recoil detection analyses which revealed that by increasing the deposition temperature from 200 to 400 °C, the atomic concentrations of residual carbon and hydrogen reduced from 1.0 to <0.5 at. % and 3.4 to 0.8 at. %, respectively. Moreover, Rutherford backscattering spectroscopy studies showed an improvement in stoichiometry of HfO2 thin films with the increase in deposition temperature, resulting in Hf/O ratio close to ∼0.5 at 400 °C. Furthermore, grazing incidence x-ray diffraction measurements detected a transition from amorphous at the deposition temperature of 300 °C to fully polycrystalline films at 400 °C, consisting of a mixture of monoclinic, tetragonal, and cubic phases. Finally, the surface morphology and conformality of HfO2 thin films studied by atomic force microscopy and transmission electron microscopy are also reported
    corecore