1 research outputs found
Nonlinear waves in a cylindrical Bose-Einstein condensate
We present a complete calculation of solitary waves propagating in a steady
state with constant velocity v along a cigar-shaped Bose-Einstein trap
approximated as infinitely-long cylindrical. For sufficiently weak couplings
(densities) the main features of the calculated solitons could be captured by
effective one-dimensional (1D) models. However, for stronger couplings of
practical interest, the relevant solitary waves are found to be hybrids of
quasi-1D solitons and 3D vortex rings. An interesting hierarchy of vortex rings
occurs as the effective coupling constant is increased through a sequence of
critical values. The energy-momentum dispersion of the above structures is
shown to exhibit characteristics similar to a mode proposed sometime ago by
Lieb within a strictly 1D model, as well as some rotonlike features.Comment: 10 pages, 12 figure