3 research outputs found

    The Acoustic Peak in the Lyman Alpha Forest

    Full text link
    We present the first simulation of the signature of baryonic acoustic oscillations (BAO) in Lyman alpha forest data containing 180,000 mock quasar sight-lines. We use eight large dark-matter only simulations onto which we paint the Lyman alpha field using the fluctuating Gunn-Peterson approximation. We argue that this approach should be sufficient for the mean signature on the scales of interest. Our results indicate that Lyman alpha flux provides a good tracer of the underlying dark matter field on large scales and that redshift space distortions are well described by a simple linear theory prescription. We compare Fourier and configuration space approaches to describing the signal and argue that configuration space statistics provide useful data compression. We also investigate the effect of a fluctuating photo-ionizing background using a simplified model and find that such fluctuations do add smooth power on large scales. The acoustic peak position is, however, unaffected for small amplitude fluctuations (<10%). Larger amplitude fluctuations make the recovery of the BAO signal more difficult and may degrade the achievable significance of the measurement.Comment: 10 pages, 8 figures; v2: minor revision matching version accepted by JCAP (new references, better figures, clarifications
    corecore