97 research outputs found
Kinetics of alkoxysilanes and organoalkoxysilanes polymerization: A review
Scientists from various different fields use organo-trialkoxysilanes and tetraalkoxysilanes in a number of applications. The silica-based materials are sometimes synthesized without a good understanding of the underlying reaction kinetics. This literature review attempts to be a comprehensive and more technical article in which the kinetics of alkoxysilanes polymerization are discussed. The kinetics of polymerization are controlled by primary factors, such as catalysts, water/silane ratio, pH, and organo-functional groups, while secondary factors, such as temperature, solvent, ionic strength, leaving group, and silane concentration, also have an influence on the reaction rates. Experiments to find correlations between these factors and reaction rates are restricted to certain conditions and most of them disregard the properties of the solvent. In this review, polymerization kinetics are discussed in the first two sections, with the first section covering early stage reactions when the reaction medium is homogenous, and the second section covering when phase separation occurs and the reaction medium becomes heterogeneous. Nuclear magnetic resonance (NMR) spectroscopy and other techniques are discussed in the third section. The last section summarizes the study of reaction mechanisms by using ab initio and Density Functional Theory (DFT) methods alone, and in combination with molecular dynamics (MD) or Monte Carlo (MC) methods
Development of interactive and remote learning instruments for engineering education
Many educators have argued for and against the use of remote aids in support of student learning. Some proponents argue that only remote laboratories should be used whereas others argue for the requirement for hands on experience with associated tactical, visual and auditory learning experiences. In this paper we present the methodology for developing a middle ground Virtual Instruments that can be used as a complement learning aid to the hands on laboratory and also if necessary, with added features, can be used as a remote version of the laboratory
3D transient thermal modelling of laser microchannel fabrication in lime-soda glass
Laser-fabricated microchannels in glass offer a wide range of bioengineering and telecommunication applications. A 1.5 kW CO2 laser with 10.6 μm wavelength was used in this study to fabricate micorchannels on the surface of soda-lime glass sheets. A thermal model of the process was developed based on transient heat conduction due to a pulsed heat input. The resulting equation predicted the temperature distribution in the regions surrounding the laser focus. Temperature – time curves were drawn from those equations, which were useful in estimating the thermal history in the processed samples. The temperature distribution was also used to predict the channel geometry (based on the vaporisation temperature of glass). Most of the laser power used was consumed in bringing the glass to the vaporisation temperature. The model was able to predict the channel width, depth and surface roughness. These laser-fabricated channel characteristics were measured and compared to the results obtained from the thermal model. The laser power, frequency, pulse width and translation speed were the control parameters in both studies; hence a direct comparison was established between the model and the experimental results
Kinetics of alkoxysilanes hydrolysis: An empirical approach
Alkoxysilanes and organoalkoxysilanes are primary materials in several industries, e.g. coating, anti-corrosion treatment, fabrication of stationary phase for chromatography, and coupling agents. The hydrolytic polycondensation reactions and final product can be controlled by adjusting the hydrolysis reaction, which was investigated under a variety of conditions, such as different alkoxysilanes, solvents, and catalysts by using gas chromatography. The hydrolysis rate of alkoxysilanes shows a dependence on the alkoxysilane structure (especially the organic attachments), solvent properties, and the catalyst dissociation constant and solubility. Some of the alkoxysilanes exhibit intramolecular catalysis. Hydrogen bonding plays an important role in the enhancement of the hydrolysis reaction, as well as the dipole moment of the alkoxysilanes, especially in acetonitrile. There is a relationship between the experimentally calculated polarity by the Taft equation and the reactivity, but it shows different responses depending on the solvent. It was found that negative and positive charges are respectively accumulated in the transition state in alkaline and acidic media. The reaction mechanisms are somewhat different from those previously suggested. Finally, it was found that enthalpy–entropy compensation (EEC) effect and isokinetic relationships (IKR) are exhibited during the hydrolysis of CTES in different solvents and catalysts; therefore, the reaction has a linear free energy relationship (LFER).The publication of this article was funded by the Qatar National Library.Scopu
An Introduction to Hyperbolic Barycentric Coordinates and their Applications
Barycentric coordinates are commonly used in Euclidean geometry. The
adaptation of barycentric coordinates for use in hyperbolic geometry gives rise
to hyperbolic barycentric coordinates, known as gyrobarycentric coordinates.
The aim of this article is to present the road from Einstein's velocity
addition law of relativistically admissible velocities to hyperbolic
barycentric coordinates along with applications.Comment: 66 pages, 3 figure
Computational control of laser systems for micro-machining
Depending on the size and geometry, laser-microfabricated structures in transparent materials have applications in telecommunications, microfluidics, micro-sensors, data storage, glass cutting and decorative marking applications. The relations of Nd:YV04 and C02 laser system parameter settings to the dimensions and morphology of microfabricated structures were examined in this work. Laser system parameters investigated included power, P, pulse repetition frequency, PRF, number of pulses, N, and scanning speed, U. Output dimensions measured included equivalent voxel diameter as well as microchannel width, depth and surface roughness.
A 3D microfabrication system was developed using the Nd:YV04 laser (2.5 W, 1.064 pm, 80 ns) to fabricate microstructures inside polycarbonate samples. Microstructure voxels ranged from 48 to 181 pm in diameter. Tight focusing was also achieved with this system using a microscope objective lens to produce smaller voxels ranging from 5 to 10 pm in soda-lime glass, fused silica and sapphire samples.
The C02 laser (1.5 kW, 10.6 pm, minimum pulse width of 26 ps) was used to fabricate microchannels in soda-lime glass samples. The cross-sectional shapes of the microchannels varied between v-shape grooves, u-shaped groves and superficial ablated regions. Microchannels dimensions also varied with widths ranging from 81 to 365 pm, depths ranging from 3 to 379 pm and surface roughness between 2 to 13 pm being produced depending on the process settings. The microchannel dimensions were studied in terms of the laser processing parameters using the response surface methodology (RSM) with the design of experiments technique (DOE). The collected results were used to study the effect of the process parameters on the volumetric and mass ablation rates. Moreover, a thermal mathematical model of the process was also developed in order to aid understanding of the process and to allow channel topology prediction a priory to actual fabrication
Eco-structured biosorptive removal of basic fuchsin using pistachio nutshells: A definitive screening design-based approach
Biosorptive removal of basic fuchsin (BF) from wastewater samples was achieved using the recycled agro-wastes of pistachio nut shells (PNS). Seven adsorbents were developed; raw shells (RPNS) and the thermally activated biomasses at six different temperatures (250–500 °C). Two measures were implemented to assess the performance of utilized adsorbents; %removal (%R) and adsorption capacity (qe). RPNS proved to be the best among the tested adsorbents. A smart approach, definitive-screening design (DSD) was operated to test the impact of independent variables on the adsorption capacity of RPNS. pH, adsorbent dose (AD), dye concentration (DC), and stirring time (ST), were the tested variables. Analysis of variance (ANOVA), control, and quality charts helped establishing regression model. Characterization was performed using Fourier- transform infrared (FT-IR)/Raman spectroscopies together with thermogravimetric analysis (TGA) and scanning electron microscopy (SEM)/energy-dispersive X-ray spectroscopy (EDX) analyses. The surface area and other textural properties were determined using the Brunauer Emmett-Teller (BET) analysis. Removal of 99.71% of BF with an adsorption capacity of 118.2 mg/g could be achieved using a factorial blend of pH 12, 100 mg/50 mL of RPNS, and 250 ppm BF for 20 min. Equilibrium studies reveal that the adsorption is physisorption with adsorption energy of 7.45 kJ/mol as indicated by Dubinin-Radushkevich (DR) and Langmuir isotherms. Moreover, adsorption follows pseudo-second-order kinetics with respect to BF and is controlled by the adsorption rate.This work was made possible by Qatar University Internal Student Grant [QUST-2-CAS-2019-18] from Qatar University. The statements made herein are solely the responsibility of the authors. The publication of this article was funded by the Qatar National Library.Scopu
Bio-Waste Aloe vera Leaves as an efficient adsorbent for Titan Yellow from Wastewater: Structuring of a novel adsorbent using Plackett-Burman factorial design
Titan yellow (TY), a triazene azo dye, was removed from contaminated wastewater samples using a green adsorbent recycled from Aloe vera leaves (AV) waste. Two adsorbents were developed-air-dried Aloe vera (ADAV) and thermally treated Aloe vera (TTAV). Adsorption efficacy of both adsorbents was assessed in terms of percent removal (%R) of TY and adsorption capacity (qe). ADAV had a better performance compared to TTAV. Plackett-Burman design (PBD) was exploited to establish the experimental pattern of the study. Four variables were studied: pH, adsorbent dose (AD), dye concentration (DC), and stirring time (ST). Analysis of variance (ANOVA) at 95.0 confidence interval (CI), control, and quality charts helped establish regression model(s). Characterization of both adsorbents was performed using FT-IR/Raman spectroscopy together with TGA/dTGA and SEM/energy dispersive X-ray spectroscopy (EDX) analyses. Textural properties were determined using nitrogen adsorption isotherms at 77 K. Results showed that the surface areas of ADAV and TTAV300 were 3.940 and 7.076 m2/g, respectively. Raman analysis showed that the TTAV had clear Dand G-bands. Equilibrium studies revealed that data were well fitted to Freundlich isotherm with a maximum adsorption capacity of 55.25 mg/g using Langmuir equation, and the adsorption was physisorption. Adsorption followed a pseudo-second order that occurred in two steps-diffusion and then adsorption. - 2019 by the authors.The project members would like to extend their special thanks to the Central Lab Unit (CLU) at the Qatar University. This work was made possible by Qatar University Internal Student Grant [QUST-2-CAS-2019-18] from Qatar University. The statements made herein are solely the responsibility of the authors. The publication of this article was funded by the Qatar National LibraryScopu
Modèle de régression optimale des traits de conformation et de la production laitière des troupeaux bovins de race kouri élevés à la station de Sayam du Niger.
Objectif : évaluer en station, la pertinence des traits de conformation traditionnellement privilégiés par les éleveurs kouri, pour l’identification des meilleures vaches laitières.Méthodologie et résultats : La production laitière et treize traits biométriques ont été évalués sur 54 vaches, de septembre 2015 à février 2016, au Centre de Multiplication de Bétail de Sayam, après six (6) mois de contrôle laitier. Il est constaté que la production laitière journalière était positivement corrélée aux traits de conformation du bassin (largeur aux ischions (r = 0.35**) et la largeur aux trochanters (r = 0.36**)), à la profondeur de poitrine (r = 0.27*), à la largeur aux poitrines (r = 0.29*) et au rapport de la largeur aux poitrines sur la largeur aux hanches (r = 0.28*). Le modèle de régression optimale de la production laitière qui s’est bien ajusté de façon hautement significative (p = 0.004) est un modèle utilisant la largeur-Trochanters et le rapport largeur- Poitrine/Largeur-hanche comme indices prévisionnels. La valeur du R carrée ajusté du modèle et de l’erreur standard des résidus étaient respectivement 0.16 et 0.43.Conclusion et perspectives : les traits biométriques intéressants, identifiés comme promoteurs dans cette étude, peuvent être inclus dans le développement de mécanismes de sélection qui peut encore être couplé à des techniques modernes de sélection. Le modèle ainsi obtenu, pourrait être utilisé pour prédire la production de lait des vaches kouri ou à des fins de sélection.Mots clés : Corrélation, modélisation, traits de conformation, production laitière, kour
Recycling of Date Pits Into a Green Adsorbent for Removal of Heavy Metals: A Fractional Factorial Design-Based Approach
Date pits (DPs) have been recycled into a low-cost adsorbent for removing of selected heavy metals (HMs) from artificially contaminated aqueous solutions. Adsorption of targeted HMs, both by raw date pits (RDP) and burnt date pits (BDP) was tested. Results showed that BDP is more efficient as an adsorbent and mostly adsorbing Cu(II). A novel approach; fractional factorial design (2k−p – FrFD) was used to build the experimental pattern of this study. The effects of four factors on the maximum percentage (%) of removal (Y) were considered; pH, adsorbent dose (AD), heavy metal concentration (HMC), and contact time (CT). Statistically significant variables were detected using Pareto chart of standardized effects, normal and half-normal plots together with analysis of variance (ANOVA) at 95.0 confidence intervals (CI). Optimizing (maximizing) the percentage (%) removal of Cu(II) by BDP, was performed using optimization plots. Results showed that the factors: pH and adsorbent dose (AD) affect the response positively. Scanning electron microscopy (SEM) was used to study the surface morphology of both adsorbents while fourier-transform infrared spectroscopy (FTIR) was employed to get an idea on the functional groups on the surface and hence the adsorption mechanism. Raman spectroscopy was used to characterize the prepared adsorbents before and after adsorption of Cu(II). Equilibrium studies show that the adsorption behavior differs according to the equilibrium concentration. In general, it follows Langmuir isotherm up to 155 ppm, then Freundlich isotherm. Free energy of adsorption (ΔGad) is −28.07 kJ/mole, when equilibrium concentration is below 155 ppm, so the adsorption process is spontaneous, while (ΔGad) equals +17.89 kJ/mole above 155 ppm, implying that the process is non-spontaneous. Furthermore, the adsorption process is a mixture of physisorption and chemisorption processes, which could be endothermic or exothermic reactions. The adsorption kinetics were described using a second order model.Funding. This work was made possible by UREP award [UREP 20-116-1-020] from the Qatar National Research Fund (a member of The Qatar Foundation). The statements made herein are solely the responsibility of the authors
- …