114,981 research outputs found

    A Time Evolution Study of the Superhumps of the Dwarf Nova 1RXS J232953.9+062814 by Wavelet Transform

    Get PDF
    The time evolution behaviour of the superhumps of the dwarf nova 1RXS J232953.9+062814 is investigated with the wavelet analysis method. On the basis of two nights CCD photometry performed during its first superoutburst as well as other published brightness data, we reveal the superhump's time-dependence as a function of periods and time. Our light curves, which phased in the rapid decay ending portion of the superoutburst and in the dawn of a following normal outburst, are important to help trace the superhump evolution for the star. Evident amplitude variations of the superhumps, reflecting the fading of outbursts, are detected. The general profile of brightness fading over the outbursts roughly followed an exponential decay law or a form of a five-order polynomial. Both the superhump period and the orbital period of the binary system are detected in the present data. We obtain P_sh=0.04575(5) d and P_orb=0.04496(5) d. They agree with the existing values based on additional data. The two periods exchanged their roles during the superhump evolution.Comment: 7 pages, 9 figures, submitted to Astronomy & Astrophysic

    Charmless decays B->pipi, piK and KK in broken SU(3)symmetry

    Full text link
    Charmless B decay modes B→ππ,πKB \to \pi \pi, \pi K and KKKK aresystematically investigated with and without flavor SU(3) symmetry. Independent analyses on ππ\pi \pi and πK\pi K modes both favor a large ratio between color-suppressed tree (CC) and tree (T)T) diagram, which suggests that they are more likely to originate from long distance effects. The sizes of QCD penguin diagrams extracted individually from ππ\pi\pi, πK\pi K and KKKK modes are found to follow a pattern of SU(3) breaking in agreement with the naive factorization estimates. Global fits to these modes are done under various scenarios of SU(3)relations. The results show good determinations of weak phase γ\gamma in consistency with the Standard Model (SM), but a large electro-weak penguin (P_{\tmop{EW}}) relative to T+CT + C with a large relative strong phase are favored, which requires an big enhancement of color suppressed electro-weak penguin (P_{\tmop{EW}}^C) compatible in size but destructively interfering with P_{\tmop{EW}} within the SM, or implies new physics. Possibility of sizable contributions from nonfactorizable diagrams such as WW-exchange (EE), annihilation(AA) and penguin-annihilation diagrams(PAP_A) are investigated. The implications to the branching ratios and CP violations in KKK Kmodes are discussed.Comment: 27 pages, 9 figures, reference added, to appear in Phy.Rev.

    Nuclear spin qubits in a trapped-ion quantum computer

    Full text link
    Physical systems must fulfill a number of conditions to qualify as useful quantum bits (qubits) for quantum information processing, including ease of manipulation, long decoherence times, and high fidelity readout operations. Since these conditions are hard to satisfy with a single system, it may be necessary to combine different degrees of freedom. Here we discuss a possible system, based on electronic and nuclear spin degrees of freedom in trapped ions. The nuclear spin yields long decoherence times, while the electronic spin, in a magnetic field gradient, provides efficient manipulation, and the optical transitions of the ions assure a selective and efficient initialization and readout.Comment: 7 page

    Nambu-Goldstone Mechanism in Real-Time Thermal Field Theory

    Get PDF
    In a one-generation fermion condensate scheme of electroweak symmetry breaking, it is proven based on Schwinger-Dyson equation in the real-time thermal field theory in the fermion bubble diagram approximation that, at finite temperature TT below the symmetry restoration temperature TcT_c, a massive Higgs boson and three massless Nambu-Goldstone bosons could emerge from the spontaneous breaking of electroweak group SUL(2)×UY(1)→UQ(1)SU_L(2)\times U_Y(1) \to U_Q(1) if the two fermion flavors in the one generation are mass-degenerate, thus Goldstone Theorem is rigorously valid in this case. However, if the two fermion flavors have unequal masses, owing to "thermal flactuation", the Goldstone Theorem will be true only approximately for a very large momentum cut-off Λ\Lambda in zero temperature fermion loop or for low energy scales. All possible pinch singularities are proven to cancel each other, as is expected in a real-time thermal field theory.Comment: 11 pages, revtex, no figure, Phys. Rev. D, to appea

    Calculation of renormalized viscosity and resistivity in magnetohydrodynamic turbulence

    Full text link
    A self-consistent renormalization (RG) scheme has been applied to nonhelical magnetohydrodynamic turbulence with normalized cross helicity σc=0\sigma_c =0 and σc→1\sigma_c \to 1. Kolmogorov's 5/3 powerlaw is assumed in order to compute the renormalized parameters. It has been shown that the RG fixed point is stable for d≥dc≈2.2d \ge d_c \approx 2.2. The renormalized viscosity ν∗\nu^* and resistivity η∗\eta^* have been calculated, and they are found to be positive for all parameter regimes. For σc=0\sigma_c=0 and large Alfv\'{e}n ratio (ratio of kinetic and magnetic energies) rAr_A, ν∗=0.36\nu^*=0.36 and η∗=0.85\eta^*=0.85. As rAr_A is decreased, ν∗\nu^* increases and η∗\eta^* decreases, untill rA≈0.25r_A \approx 0.25 where both ν∗\nu^* and η∗\eta^* are approximately zero. For large dd, both ν∗\nu^* and η∗\eta^* vary as d−1/2d^{-1/2}. The renormalized parameters for the case σc→1\sigma_c \to 1 are also reported.Comment: 19 pages REVTEX, 3 ps files (Phys. Plasmas, v8, 3945, 2001
    • …
    corecore