39,074 research outputs found

    The rare decay B --> X_s l^+ l^- to NNLL precision for arbitrary dilepton invariant mass

    Full text link
    We present a new phenomenological analysis of the inclusive rare decay B→Xsℓ+ℓ−B \to X_s \ell^+\ell^-. In particular, we present the first calculation of the NNLL contributions due to the leading two-loop matrix elements, evaluated for arbitrary dilepton invariant mass. This allows to obtain the first NNLL estimates of the dilepton mass spectrum and the lepton forward-backward asymmetry in the high Mℓ+ℓ−2 M^2_{\ell^+ \ell^-} region, and to provide an independent check of previously published results in the low Mℓ+ℓ−2 M^2_{\ell^+ \ell^-} region. The numerical impact of these NNLL corrections in the high-mass region (Mℓ+ℓ−2>14.4GeV2 M^2_{\ell^+ \ell^-} > 14.4 GeV^2) amounts to -13% in the integrated rate, and leads to a reduction of the scale uncertainty to ±3\pm 3%. The impact of non-perturbative contributions in this region is also discussed in detail.Comment: 40 pages, 12 figures. v2: extended phenomenological discussion; results unchanged; published versio

    Nonlinear Aggregation-Diffusion Equations: Radial Symmetry and Long Time Asymptotics

    Full text link
    We analyze under which conditions equilibration between two competing effects, repulsion modeled by nonlinear diffusion and attraction modeled by nonlocal interaction, occurs. This balance leads to continuous compactly supported radially decreasing equilibrium configurations for all masses. All stationary states with suitable regularity are shown to be radially symmetric by means of continuous Steiner symmetrization techniques. Calculus of variations tools allow us to show the existence of global minimizers among these equilibria. Finally, in the particular case of Newtonian interaction in two dimensions they lead to uniqueness of equilibria for any given mass up to translation and to the convergence of solutions of the associated nonlinear aggregation-diffusion equations towards this unique equilibrium profile up to translations as t→∞t\to\infty

    Influence of low-level Pr substitution on the superconducting properties of YBa2Cu3O7-delta single crystals

    Full text link
    We report on measurements on Y1-xPrxBa2Cu3O7-delta single crystals, with x varying from 0 to 2.4%. The upper and the lower critical fields, Hc2 and Hc1, the Ginzburg-Landau parameter and the critical current density, Jc(B), were determined from magnetization measurements and the effective media approach scaling method. We present the influence of Pr substitution on the pinning force density as well as on the trapped field profiles analyzed by Hall probe scanning.Comment: 4 pages, 5 figures, accepted for publication in J. Phys. Conf. Se

    In-plane thermal conductivity of large single crystals of Sm-substituted (Y1−x_{1-x}Smx_{x})Ba2_{2}Cu3_{3}O7−δ_{7-\delta}

    Full text link
    We have investigated the in-plane thermal conductivity κab(T,H)\kappa_{ab}(T,H) of large single crystals of optimally oxygen-doped (Y1−x_{1-x},Smx_{x})Ba2_{2}Cu3_{3}O7−δ_{7-\delta} (xx=0, 0.1, 0.2 and 1.0) and YBa2_{2}(Cu1−y_{1-y}Zny_{y})3_{3}O7−δ_{7-\delta}(yy=0.0071) as functions of temperature and magnetic field (along the c axis). For comparison, the temperature dependence of κab\kappa_{ab} for as-grown crystals with the corresponding compositions are presented. The nonlinear field dependence of κab\kappa_{ab} for all crystals was observed at relatively low fields near a half of TcT_{c}. We make fits of the κ(H)\kappa(H) data to an electron contribution model, providing both the mean free path of quasiparticles ℓ0\ell_{0} and the electronic thermal conductivity κe\kappa_{e}, in the absence of field. The local lattice distortion due to the Sm substitution for Y suppresses both the phonon and electron contributions. On the other hand, the light Zn doping into the CuO 2_{2} planes affects solely the electron component below TcT_{c}, resulting in a substantial decrease in ℓ0\ell_{0} .Comment: 7 pages,4 figures,1 tabl

    Unimpeded tunneling in graphene nanoribbons

    Full text link
    We studied the Klein paradox in zigzag (ZNR) and anti-zigzag (AZNR) graphene nanoribbons. Due to the fact that ZNR (the number of lattice sites across the nanoribbon (N is even) and AZNR (N is odd) configurations are indistinguishable when treated by the Dirac equation, we supplemented the model with a pseudo-parity operator whose eigenvalues correctly depend on the sublattice wavefunctions for the number of carbon atoms across the ribbon, in agreement with the tight-binding model. We have shown that the Klein tunneling in zigzag nanoribbons is related to conservation of the pseudo-parity rather than pseudo-spin in infinite graphene. The perfect transmission in the case of head-on incidence is replaced by perfect transmission at the center of the ribbon and the chirality is interpreted as the projection of the pseudo-parity on momentum at different corners of the Brillouin zone
    • …
    corecore