27,419 research outputs found
Picosecond excitation of jet-cooled hydrogen-bonded systems: Dispersed fluorescence and time-resolved studies of methyl salicylatea
Long progressions involving frequency intervals of 180 cm^(−1) are observed in the fluoresence of MS for 3327.5 Å excitation. (AIP
Observation of intracavity absorption of molecules in supersonic beams
Intracavity absorption studies of DMT and I2 are reported at rotational and vibrational temperatures of <0.1 K and 16 K, respectively
Sub-gap conductance in ferromagnetic-superconducting mesoscopic structures
We study the sub-gap conductance of a ferromagnetic mesoscopic region
attached to a ferromagnetic and a superconducting electrode by means of tunnel
junctions. In the absence of the exchange field, the ratio of the two tunnel junction resistances determines the behaviour of
the sub-gap conductance which possesses a zero-bias peak for and for
a peak at finite voltage. We show that the inclusion of the exchange
field leads to a peak splitting for , while it shifts the zero-bias
anomaly to finite voltages for .Comment: 5 pages revte
Particle Production in Tachyon Condensation
We study particle production in the tachyon condensation process as described
by different effective actions for the tachyon. By making use of invariant
operators, we are able to obtain exact results for the density of produced
particles, which is shown to depend strongly on the specific action. In
particular, the rate of particle production remains finite only for one of the
actions considered, hence confirming results previously appeared in the
literature.Comment: LaTeX, 6 pages, 3 figure
Monitoring Networked Applications With Incremental Quantile Estimation
Networked applications have software components that reside on different
computers. Email, for example, has database, processing, and user interface
components that can be distributed across a network and shared by users in
different locations or work groups. End-to-end performance and reliability
metrics describe the software quality experienced by these groups of users,
taking into account all the software components in the pipeline. Each user
produces only some of the data needed to understand the quality of the
application for the group, so group performance metrics are obtained by
combining summary statistics that each end computer periodically (and
automatically) sends to a central server. The group quality metrics usually
focus on medians and tail quantiles rather than on averages. Distributed
quantile estimation is challenging, though, especially when passing large
amounts of data around the network solely to compute quality metrics is
undesirable. This paper describes an Incremental Quantile (IQ) estimation
method that is designed for performance monitoring at arbitrary levels of
network aggregation and time resolution when only a limited amount of data can
be transferred. Applications to both real and simulated data are provided.Comment: This paper commented in: [arXiv:0708.0317], [arXiv:0708.0336],
[arXiv:0708.0338]. Rejoinder in [arXiv:0708.0339]. Published at
http://dx.doi.org/10.1214/088342306000000583 in the Statistical Science
(http://www.imstat.org/sts/) by the Institute of Mathematical Statistics
(http://www.imstat.org
General Green's function formalism for transport calculations with spd-Hamiltonians and giant magnetoresistance in Co and Ni based magnetic multilayers
A novel, general Green's function technique for elastic spin-dependent
transport calculations is presented, which (i) scales linearly with system size
and (ii) allows straightforward application to general tight-binding
Hamiltonians (spd in the present work). The method is applied to studies of
conductance and giant magnetoresistance (GMR) of magnetic multilayers in CPP
(current perpendicular to planes) geometry in the limit of large coherence
length. The magnetic materials considered are Co and Ni, with various
non-magnetic materials from the 3d, 4d, and 5d transition metal series.
Realistic tight-binding models for them have been constructed with the use of
density functional calculations. We have identified three qualitatively
different cases which depend on whether or not the bands (densities of states)
of a non-magnetic metal (i) form an almost perfect match with one of spin
sub-bands of the magnetic metal (as in Cu/Co spin valves); (ii) have almost
pure sp character at the Fermi level (e.g. Ag); (iii) have almost pure d
character at the Fermi energy (e.g. Pd, Pt). The key parameters which give rise
to a large GMR ratio turn out to be (i) a strong spin polarization of the
magnetic metal, (ii) a large energy offset between the conduction band of the
non-magnetic metal and one of spin sub-bands of the magnetic metal, and (iii)
strong interband scattering in one of spin sub-bands of a magnetic metal. The
present results show that GMR oscillates with variation of the thickness of
either non-magnetic or magnetic layers, as observed experimentally.Comment: 22 pages, 9 figure
Rejoinder: Monitoring Networked Applications With Incremental Quantile Estimation
Rejoinder: Monitoring Networked Applications With Incremental Quantile
Estimation [arXiv:0708.0302]Comment: Published at http://dx.doi.org/10.1214/088342306000000592 in the
Statistical Science (http://www.imstat.org/sts/) by the Institute of
Mathematical Statistics (http://www.imstat.org
The Abundance Of Boron In Diffuse Interstellar Clouds
We present a comprehensive survey of boron abundances in diffuse interstellar clouds from observations made with the Space Telescope Imaging Spectrograph (STIS) of the Hubble Space Telescope. Our sample of 56 Galactic sight lines is the result of a complete search of archival STIS data for the B II lambda 1362 resonance line, with each detection confirmed by the presence of absorption from O I lambda 1355, Cu II lambda 1358, and Ga II lambda 1414 (when available) at the same velocity. Five previous measurements of interstellar B II from Goddard High Resolution Spectrograph observations are incorporated in our analysis, yielding a combined sample that more than quadruples the number of sight lines with significant boron detections. Our survey also constitutes the first extensive analysis of interstellar gallium from STIS spectra and expands on previously published results for oxygen and copper. The observations probe both high-and low-density diffuse environments, allowing the density-dependent effects of interstellar depletion to be clearly identified in the gas-phase abundance data for each element. In the case of boron, the increase in relative depletion with line-of-sight density amounts to an abundance difference of 0.8 dex between the warm and cold phases of the diffuse interstellar medium. The abundance of boron in warm, low-density gas is found to be B/H = (2.4 +/- 0.6) x 10(-10), which represents a depletion of 60% relative to the meteoritic boron abundance. Beyond the effects of depletion, our survey reveals sight lines with enhanced boron abundances that potentially trace the recent production of B-11, resulting from spallation reactions involving either cosmic rays or neutrinos. Future observations will help to disentangle the relative contributions from the two spallation channels for B-11 synthesis.Robert A. Welch Foundation F-634Space Telescope Science Institute HST-AR-11247.01-AAssociation of Universities for Research in Astronomy, Inc., under NASA NAS5-26555Astronom
- …