2 research outputs found

    Solution of the two impurity, two channel Kondo Model

    Full text link
    We solve the two-impurity two-channel Kondo model using a combination of conformal invariance and bosonisation techniques. The odd-even symmetric case is analysed in detail. The RKKY interaction turns out to be exactly marginal, resulting in a line of non-Fermi liquid fixed points. Explicit formulae are given for the critical exponents and for the finite-size spectrum, which depend continuously on a single parameter. The marginal line spans a range of values of the RKKY coupling II which goes from the infinitely strong ferromagnetic point I=−∞I=-\infty (associated with a 4-channel spin-1 Kondo model) to a finite antiferromagnetic critical value Ic>0I_c>0 beyond which a Fermi liquid is recovered. We also find that, when the odd-even symmetry is broken, the marginal line is unstable for ferromagnetic II, while for antiferromagnetic II it extends into a manifold of fixed points.Comment: 9 pages, preprint LPTENS 94/1

    Pedestrian Approach to the Two-Channel Kondo Model

    Full text link
    We reformulate the two-channel Kondo model to explicitly remove the unscattered charge degrees of freedom. This procedure permits us to move the non-Fermi liquid fixed point to infinite coupling where we can apply a perturbative strong-coupling expansion. The fixed point Hamiltonian involves a three-body Majorana zero mode whose scattering effects give rise to marginal self-energies. The compactified model is the N=3 member of a family of "O(N)" Kondo models that can be solved by semiclassical methods in the large NN limit. For odd NN, {\em fermionic} "Kink" fluctuations about the N=∞N=\infty mean-field theory generate a fermionic NN-body bound-state which asymptotically decouples at low energies. For N=3, our semi-classical methods fully recover the non-Fermi liquid physics of the original two channel model. Using the same methods, we find that the corresponding O(3) Kondo lattice model develops a spin-gap and a gapless band of coherently propagating three-body bound-states. Its strong-coupling limit offers a rather interesting realization of marginal Fermi liquid behavior.Comment: 17 pages, Revtex 3.0. Replaced with fully compiled postscript file
    corecore