53 research outputs found

    Current-Induced Spin Polarization at a Single Heterojunction

    Get PDF

    Geometric and compositional influences on spin-orbit induced circulating currents in nanostructures

    Get PDF
    Circulating orbital currents, originating from the spin-orbit interaction, are calculated for semiconductor nanostructures in the shape of spheres, disks, spherical shells and rings for the electron ground state with spin oriented along a symmetry axis. The currents and resulting orbital and spin magnetic moments, which combine to yield the effective electron g factor, are calculated using a recently introduced formalism that allows the relative contributions of different regions of the nanostructure to be identified. For all these spherically or cylindrically symmetric hollow or solid nanostructures, independent of material composition and whether the boundary conditions are hard or soft, the dominant orbital current originates from intermixing of valence band states in the electron ground state, circulates within the nanostructure, and peaks approximately halfway between the center and edge of the nanostructure in the plane perpendicular to the spin orientation. For a specific material composition and confinement character, the confinement energy and orbital moment are determined by a single size-dependent parameter for spherically symmetrical nanostructures, whereas they can be independently tuned for cylindrically symmetric nanostructures.Comment: 22 pages, 20 figure

    Spin-orbit-induced circulating currents in a semiconductor nanostructure

    Get PDF
    Circulating orbital currents produced by the spin-orbit interaction for a single electron spin in a quantum dot are explicitly evaluated at zero magnetic field, along with their effect on the total magnetic moment (spin and orbital) of the electron spin. The currents are dominated by coherent superpositions of the conduction and valence envelope functions of the electronic state, are smoothly varying within the quantum dot, and are peaked roughly halfway between the dot center and edge. Thus the spatial structure of the spin contribution to the magnetic moment (which is peaked at the dot center) differs greatly from the spatial structure of the orbital contribution. Even when the spin and orbital magnetic moments cancel (for g=0g=0) the spin can interact strongly with local magnetic fields, e.g. from other spins, which has implications for spin lifetimes and spin manipulation.Comment: 6 pages, 3 figure

    g-Factors and diamagnetic coefficients of electrons, holes and excitons in InAs/InP quantum dots

    Get PDF
    The electron, hole, and exciton g-factors and diamagnetic coefficients have been calculated using envelope-function theory for cylindrical InAs/InP quantum dots in the presence of a magnetic field parallel to the dot symmetry axis. A clear connection is established between the electron g-factor and the amplitude of the those valence-state envelope functions which possess non-zero orbital momentum associated with the envelope function. The dependence of the exciton diamagnetic coefficients on the quantum dot height is found to correlate with the energy dependence of the effective mass. Calculated exciton g-factor and diamagnetic coefficients, constructed from the values associated with the electron and hole constituents of the exciton, match experimental data well, however including the Coulomb interaction between the electron and hole states improves the agreement. Remote-band contributions to the valence-band electronic structure, included perturbatively, reduce the agreement between theory and experiment.Comment: 12 pages, 7 figure

    Optical spectroscopy of single beryllium acceptors in GaAs/AlGaAs quantum well

    Get PDF
    We carry out microphotoluminescence measurements of an acceptor-bound exciton (A^0X) recombination in the applied magnetic field with a single impurity resolution. In order to describe the obtained spectra we develop a theoretical model taking into account a quantum well (QW) confinement, an electron-hole and hole-hole exchange interaction. By means of fitting the measured data with the model we are able to study the fine structure of individual acceptors inside the QW. The good agreement between our experiments and the model indicates that we observe single acceptors in a pure two-dimensional environment whose states are unstrained in the QW plain

    Optical orientation of spins in GaAs:Mn/AlGaAs quantum wells via impurity-to-band excitation

    Get PDF
    The paper reports optical orientation experiments performed in the narrow GaAs/AlGaAs quantum wells doped with Mn. We experimentally demonstrate a control over the spin polarization by means of the optical orientation via the impurity-to-band excitation and observe a sign inversion of the luminescence polarization depending on the pump power. The g factor of a hole localized on the Mn acceptor in the quantum well was also found to be considerably modified from its bulk value due to the quantum confinement effect. This finding shows the importance of the local environment on magnetic properties of the dopants in semiconductor nanostructures

    Size dependent exciton g-factor in self-assembled InAs/InP quantum dots

    Get PDF
    We have studied the size dependence of the exciton g-factor in self-assembled InAs/InP quantum dots. Photoluminescence measurements on a large ensemble of these dots indicate a multimodal height distribution. Cross-sectional Scanning Tunneling Microscopy measurements have been performed and support the interpretation of the macro photoluminescence spectra. More than 160 individual quantum dots have systematically been investigated by analyzing single dot magneto-luminescence between 1200nm and 1600 nm. We demonstrate a strong dependence of the exciton g-factor on the height and diameter of the quantum dots, which eventually gives rise to a sign change of the g-factor. The observed correlation between exciton g-factor and the size of the dots is in good agreement with calculations. Moreover, we find a size dependent anisotropy splitting of the exciton emission in zero magnetic field.Comment: 15 pages, 7 figure

    Single InAs quantum dot arrays and directed self-organization on patterned GaAs (311)B substrates

    Get PDF
    Formation of laterally ordered single InAs quantum dot (QD) arrays by self-organized anisotropic strain engineering of InGaAs/GaAs superlattice templates on GaAs (311)B by molecular beam epitaxy is achieved through optimization of growth temperature, InAs amount, and annealing. Directed self-organization of these QD arrays is accomplished by coarse substrate patterns providing absolute QD position control over large areas. Due to the absence of one-to-one pattern definition the site-controlled QD arrays exhibit excellent optical properties revealed by resolution limited (80 µeV) linewidth of the low-temperature photoluminescence from individual QDs. © 2009 American Institute of Physics

    Spatial structure of Mn-Mn acceptor pairs in GaAs

    Get PDF
    The local density of states of Mn-Mn pairs in GaAs is mapped with cross-sectional scanning tunneling microscopy and compared with theoretical calculations based on envelope-function and tight-binding models. These measurements and calculations show that the crosslike shape of the Mn-acceptor wavefunction in GaAs persists even at very short Mn-Mn spatial separations. The resilience of the Mn-acceptor wave-function to high doping levels suggests that ferromagnetism in GaMnAs is strongly influenced by impurity-band formation. The envelope-function and tight-binding models predict similarly anisotropic overlaps of the Mn wave-functions for Mn-Mn pairs. This anisotropy implies differing Curie temperatures for Mn δ\delta-doped layers grown on differently oriented substrates.Comment: 4 pages, 4 figure
    • …
    corecore