20,828 research outputs found
Performance Analysis of Finned-Tube Heat Exchanger Charged with Phase Change Material for Space Cooling
The performance of a latent heat storage unit comprised of phase change material (PCM) enclosed in a finned-tube heat exchanger was evaluated experimentally and theoretically to determine its viability to condition a space during summer. The internal and external design conditions of a typical building were selected and analyzed to determine the type of PCM, and the phase change temperature required for space cooling. Subsequently, a PCM of Plus-ice A17 was selected and charged into a small-scale finned-tube heat exchanger. Extensive measurements were conducted on the PCM heat exchanger at different operating conditions. Meanwhile, a three-dimensional computational fluid dynamics model for the PCM heat exchanger was developed and validated with the experimental measurements and thus simulated. When the airflow velocity increases from 1.3 m/s to 6 m/s, the phase change periods decrease by 25% and 13% for the PCM charging and discharging processes respectively. When the PCM thermal conductivity increases from 1 W/(m·K) to 8 W/(m·K), the phase change periods reduce by 36.3% and 47.7% for the PCM charging and discharging processes respectively. In addition, for the same increased range of PCM thermal conductivity, the charging energy efficiency increases by 16.3%, and the discharging energy ratio drops by 7.1%
Holographic fermions in charged Gauss-Bonnet black hole
We study the properties of the Green's functions of the fermions in charged
Gauss-Bonnet black hole. What we want to do is to investigate how the presence
of Gauss-Bonnet coupling constant affects the dispersion relation,
which is a characteristic of Fermi or non-Fermi liquid, as well as what
properties such a system has, for instance, the Particle-hole (a)symmetry. One
important result of this research is that we find for , the behavior of
this system is different from that of the Landau Fermi liquid and so the system
can be candidates for holographic dual of generalized non-Fermi liquids. More
importantly, the behavior of this system increasingly similar to that of the
Landau Fermi liquid when is approaching its lower bound. Also we find
that this system possesses the Particle-hole asymmetry when , another
important characteristic of this system. In addition, we also investigate
briefly the cases of the charge dependence.Comment: 22 pages, 6 figures; version published in JHE
R^2 Corrections to Asymptotically Lifshitz Spacetimes
We study corrections to five-dimensional asymptotically Lifshitz
spacetimes by adding Gauss-Bonnet terms in the effective action. For the
zero-temperature backgrounds we obtain exact solutions in both pure
Gauss-Bonnet gravity and Gauss-Bonnet gravity with non-trivial matter. The
dynamical exponent undergoes finite renormalization in the latter case. For the
finite-temperature backgrounds we obtain black brane solutions perturbatively
and calculate the ratio of shear viscosity to entropy density . The KSS
bound is still violated but unlike the relativistic counterparts, the causality
of the boundary field theory cannot be taken as a constraint.Comment: 24 pages, Latex, typos fixed, accepted by JHE
Superconducting microfabricated ion traps
We fabricate superconducting ion traps with niobium and niobium nitride and
trap single 88Sr ions at cryogenic temperatures. The superconducting transition
is verified and characterized by measuring the resistance and critical current
using a 4-wire measurement on the trap structure, and observing change in the
rf reflection. The lowest observed heating rate is 2.1(3) quanta/sec at 800 kHz
at 6 K and shows no significant change across the superconducting transition,
suggesting that anomalous heating is primarily caused by noise sources on the
surface. This demonstration of superconducting ion traps opens up possibilities
for integrating trapped ions and molecular ions with superconducting devices.Comment: 3 pages, 2 figure
Effects of Capping on the (Ga,Mn)As Magnetic Depth Profile
Annealing can increase the Curie temperature and net magnetization in
uncapped (Ga,Mn)As films, effects that are suppressed when the films are capped
with GaAs. Previous polarized neutron reflectometry (PNR) studies of uncapped
(Ga,Mn)As revealed a pronounced magnetization gradient that was reduced after
annealing. We have extended this study to (Ga,Mn)As capped with GaAs. We
observe no increase in Curie temperature or net magnetization upon annealing.
Furthermore, PNR measurements indicate that annealing produces minimal
differences in the depth-dependent magnetization, as both as-grown and annealed
films feature a significant magnetization gradient. These results suggest that
the GaAs cap inhibits redistribution of interstitial Mn impurities during
annealing.Comment: 12 pages, 3 figures, submitted to Applied Physics Letter
An improvement of isochronous mass spectrometry: Velocity measurements using two time-of-flight detectors
Isochronous mass spectrometry (IMS) in storage rings is a powerful tool for
mass measurements of exotic nuclei with very short half-lives down to several
tens of microseconds, using a multicomponent secondary beam separated in-flight
without cooling. However, the inevitable momentum spread of secondary ions
limits the precision of nuclear masses determined by using IMS. Therefore, the
momentum measurement in addition to the revolution period of stored ions is
crucial to reduce the influence of the momentum spread on the standard
deviation of the revolution period, which would lead to a much improved mass
resolving power of IMS. One of the proposals to upgrade IMS is that the
velocity of secondary ions could be directly measured by using two
time-of-flight (double TOF) detectors installed in a straight section of a
storage ring. In this paper, we outline the principle of IMS with double TOF
detectors and the method to correct the momentum spread of stored ions.Comment: Accepted by Nuclear Inst. and Methods in Physics Research,
A Model of Strongly Correlated Electrons with Condensed Resonating-Valence-Bond Ground States
We propose a new exactly solvable model of strongly correlated electrons. The
model is based on a - model of the CuO plane with infinitely large
repulsive interactions on Cu-sites, and it contains additional
correlated-hopping, pair-hopping and charge-charge interactions of electrons.
For even numbers of electrons less than or equal to 2/3-filling, we construct
the exact ground states of the model, all of which have the same energy and
each of which is the unique ground state for a fixed electron number. It is
shown that these ground states are the resonating-valence-bond states which are
also regarded as condensed states in which all electrons are in a single
two-electron state. We also show that the ground states exhibit off-diagonal
long-range order.Comment: 17 pages, 1 figure, v2: minor changes, v3: minor changes and typos
correction
Cosmic Parallax in Ellipsoidal Universe
The detection of a time variation of the angle between two distant sources
would reveal an anisotropic expansion of the Universe. We study this effect of
"cosmic parallax" within the "ellipsoidal universe" model, namely a particular
homogeneous anisotropic cosmological model of Bianchi type I, whose attractive
feature is the potentiality to account for the observed lack of power of the
large-scale cosmic microwave background anisotropy. The preferred direction in
the sky, singled out by the axis of symmetry inherent to planar symmetry of
ellipsoidal universe, could in principle be constrained by future cosmic
parallax data. However, that will be a real possibility if and when the
experimental accuracy will be enhanced at least by two orders of magnitude.Comment: 9 pages, 2 figures, 1 table. Revised version to match published
version. References adde
Performance of virtual full-duplex relaying on cooperative multi-path relay channels
We consider a cooperative multi-path relay channel (MPRC) where multiple half-duplex relays assist in the packet transmissions from a source to its destination. A virtual full-duplex (FD) relaying scheme is proposed that allows the source to transmit a new packet simultaneously with the selected best relay, with the rest of the relays attempting to decode this new packet. Thus, a new source packet can be served in each time slot, as in FD relay systems. Taking into account the effect of inter-relay interference (IRI) that is caused by simultaneous relay and source transmissions, a Markov chain analytical model is used to characterize the decoding performance at the relays, based on which the overall outage probability of MPRC is obtained in closed-form expressions. The asymptotic performance analysis reveals that in low rate scenarios, a close-to-full diversity order is achieved by the proposed scheme while substantially improving the spectrum efficiency. In high rate scenarios, the decoding performance of relays is limited by IRI and the system outage performance experiences an error floor. Simulation results demonstrate the performance gains of the proposed scheme by comparisons with existing half-duplex and FD relay systems in the literature
- …