12,149 research outputs found

    Modelling Accretion in Transitional Disks

    Full text link
    Transitional disks are protoplanetary disk around young stars that display inner holes in the dust distribution within a few AU, which is accompanied nevertheless by some gas accretion onto the central star. These cavities could possibly be created by the presence of one or more massive planets. If the gap is created by planets and gas is still present in it, then there should be a flow of gas past the planet into the inner region. It is our goal to study the mass accretion rate into the gap and in particular the dependency on the planet's mass and the thermodynamic properties of the disk. We performed 2D hydro simulations for disks with embedded planets. We added radiative cooling from the disk surfaces, radiative diffusion in the disk midplane, and stellar irradiation to the energy equation to have more realistic models. The mass flow rate into the gap region depends, for given disk thermodynamics, non-monotonically on the mass of the planet. Generally, more massive planets open wider and deeper gaps which would tend to reduce the mass accretion into the inner cavity. However, for larger mass planets the outer disk becomes eccentric and the mass flow rate is enhanced over the low mass cases. As a result, for the isothermal disks the mass flow is always comparable to the expected mass flow of unperturbed disks M_d, while for more realistic radiative disks the mass flow is very small for low mass planets (<= 4 M_jup) and about 50% for larger planet masses. For the radiative disks that critical planet mass for the disk to become eccentric is much larger that in the isothermal case. Massive embedded planets can reduce the mass flow across the gap considerably, to values of about an order of magnitude smaller than the standard disk accretion rate, and can be responsible for opening large cavities. The remaining mass flow into the central cavity is in good agreement with the observations.Comment: 10 pages, 29 figures, accepted for publication in Astronomy & Astrophysic

    Computing generators of the unit group of an integral abelian group ring

    Get PDF
    We describe an algorithm for obtaining generators of the unit group of the integral group ring ZG of a finite abelian group G. We used our implementation in Magma of this algorithm to compute the unit groups of ZG for G of order up to 110. In particular for those cases we obtained the index of the group of Hoechsmann units in the full unit group. At the end of the paper we describe an algorithm for the more general problem of finding generators of an arithmetic group corresponding to a diagonalizable algebraic group

    Stationary and transient leakage current in the Pauli spin blockade

    Full text link
    We study the effects of cotunneling and a non-uniform Zeeman splitting on the stationary and transient leakage current through a double quantum dot in the Pauli spin blockade regime. We find that the stationary current due to cotunneling vanishes at low temperature and large applied magnetic field, allowing for the dynamical preparation of a pure spin ground state, even at large voltage bias. Additionally, we analyze current that flows between blocking events, characterized, in general, by a fractional effective charge e∗e^*. This charge can be used as a sensitive probe of spin relaxation mechanisms and can be used to determine the visibility of Rabi oscillations.Comment: v1: 4 pages; v2: 4 pages+ additional supplementary material, version to appear in PR

    New Numerical Results Indicate a Half-Filling SU(4) Kondo State in Carbon Nanotubes

    Full text link
    Numerical calculations simulate transport experiments in carbon nanotube quantum dots (P. Jarillo-Herrero et al., Nature 434, 484 (2005)), where a strongly enhanced Kondo temperature T_K ~ 8K was associated with the SU(4) symmetry of the Hamiltonian at quarter-filling for an orbitally double-degenerate single-occupied electronic shell. Our results clearly suggest that the Kondo conductance measured for an adjacent shell with T_K ~ 16K, interpreted as a singlet-triplet Kondo effect, can be associated instead to an SU(4) Kondo effect at half-filling. Besides presenting spin-charge Kondo screening similar to the quarter-filling SU(4), the half-filling SU(4) has been recently associated to very rich physical behavior, including a non-Fermi-liquid state (M. R. Galpin et al., Phys. Rev. Lett. 94, 186406 (2005)).Comment: 7 pages, 7 figure
    • …
    corecore