3,505 research outputs found

    Entanglement gives rise to Pareto optimality in the generalised quantum Hawk-Dove Game

    Get PDF
    We quantise the generalised Hawk-Dove Game. By restricting the strategy space available to the players, we show that every game of this type can be extended into the quantum realm to produce a Pareto optimal evolutionarily stable strategy. This equilibrium replaces the inefficient classical one when the entanglement prepared in the game exceeds a critical threshold value, which we derive analytically.Comment: 7 pages, 2 figures, submitted for review, comments welcom

    Core excitation in Ozone localized to one of two symmetry-equivalent chemical bonds - molecular alignment through vibronic coupling

    Full text link
    Core excitation from terminal oxygen OT_T in O3_3 is shown to be an excitation from a localized core orbital to a localized valence orbital. The valence orbital is localized to one of the two equivalent chemical bonds. We experimentally demonstrate this with the Auger Doppler effect which is observable when O3_3 is core-excited to the highly dissociative OT_{T}1s1^{-1}7a11_1^1 state. Auger electrons emitted from the atomic oxygen fragment carry information about the molecular orientation relative to the electromagnetic field vector at the moment of excitation. The data together with analytical functions for the electron-peak profiles give clear evidence that the preferred molecular orientation for excitation only depends on the orientation of one bond, not on the total molecular orientation. The localization of the valence orbital "7a1_1" is caused by mixing of the valence orbital "5b2_2" through vibronic coupling of anti-symmetric stretching mode with b2_2-symmetry. To the best of our knowledge, it is the first discussion of the localization of a core excitation of O3_3. This result explains the success of the widely used assumption of localized core excitation in adsorbates and large molecules

    Self heating and nonlinear current-voltage characteristics in bilayer graphene

    Get PDF
    We demonstrate by experiments and numerical simulations that the low-temperature current-voltage characteristics in diffusive bilayer graphene (BLG) exhibit a strong superlinearity at finite bias voltages. The superlinearity is weakly dependent on doping and on the length of the graphene sample. This effect can be understood as a result of Joule heating. It is stronger in BLG than in monolayer graphene (MLG), since the conductivity of BLG is more sensitive to temperature due to the higher density of electronic states at the Dirac point.Comment: 9 pages, 7 figures, REVTeX 4.

    Contributory and Comparative Negligence in Puerto Rico

    Get PDF

    ANCOM: A New Attitude Toward Foreign Investment?

    Get PDF

    ANCOM: A New Attitude Toward Foreign Investment?

    Get PDF
    corecore