3,505 research outputs found
Entanglement gives rise to Pareto optimality in the generalised quantum Hawk-Dove Game
We quantise the generalised Hawk-Dove Game. By restricting the strategy space
available to the players, we show that every game of this type can be extended
into the quantum realm to produce a Pareto optimal evolutionarily stable
strategy. This equilibrium replaces the inefficient classical one when the
entanglement prepared in the game exceeds a critical threshold value, which we
derive analytically.Comment: 7 pages, 2 figures, submitted for review, comments welcom
Core excitation in Ozone localized to one of two symmetry-equivalent chemical bonds - molecular alignment through vibronic coupling
Core excitation from terminal oxygen O in O is shown to be an
excitation from a localized core orbital to a localized valence orbital. The
valence orbital is localized to one of the two equivalent chemical bonds. We
experimentally demonstrate this with the Auger Doppler effect which is
observable when O is core-excited to the highly dissociative
O1s7a state. Auger electrons emitted from the atomic oxygen
fragment carry information about the molecular orientation relative to the
electromagnetic field vector at the moment of excitation. The data together
with analytical functions for the electron-peak profiles give clear evidence
that the preferred molecular orientation for excitation only depends on the
orientation of one bond, not on the total molecular orientation. The
localization of the valence orbital "7a" is caused by mixing of the valence
orbital "5b" through vibronic coupling of anti-symmetric stretching mode
with b-symmetry. To the best of our knowledge, it is the first discussion
of the localization of a core excitation of O. This result explains the
success of the widely used assumption of localized core excitation in
adsorbates and large molecules
Self heating and nonlinear current-voltage characteristics in bilayer graphene
We demonstrate by experiments and numerical simulations that the
low-temperature current-voltage characteristics in diffusive bilayer graphene
(BLG) exhibit a strong superlinearity at finite bias voltages. The
superlinearity is weakly dependent on doping and on the length of the graphene
sample. This effect can be understood as a result of Joule heating. It is
stronger in BLG than in monolayer graphene (MLG), since the conductivity of BLG
is more sensitive to temperature due to the higher density of electronic states
at the Dirac point.Comment: 9 pages, 7 figures, REVTeX 4.
- …