225 research outputs found
Non-Hydrolysable Analogues of Cyclic and Branched Condensed Phosphates: Chemistry and Chemical Proteomics.
Studies into the biology of condensed phosphates almost exclusively cover linear polyphosphates. However, there is evidence for the presence of cyclic polyphosphates (metaphosphates) in organisms and for enzymatic digestion of branched phosphates (ultraphosphates) with alkaline phosphatase. Further research of non-linear condensed phosphates in biology would profit from interactome data of such molecules, however, their stability in biological media is limited. Here we present syntheses of modified, non-hydrolysable analogues of cyclic and branched condensed phosphates, called meta- and ultraphosphonates, and their application in a chemical proteomics approach using yeast cell extracts. We identify putative interactors with overlapping hits for structurally related capture compounds underlining the quality of our results. The datasets serve as starting point to study the biological relevance and functions of meta- and ultraphosphates. In addition, we examine the reactivity of meta- and ultraphosphonates with implications for their "hydrolysable" analogues: Efforts to increase the ring-sizes of meta- or cyclic ultraphosphonates revealed a strong preference to form trimetaphosphate-analogue structures by cyclization and/or ring-contraction. Using carbodiimides for condensation, the so far inaccessible dianhydro product of ultraphosphonate, corresponding to P <sub>4</sub> O <sub>11</sub> <sup>2-</sup> , was selectively obtained and then ring-opened by different nucleophiles yielding modified cyclic ultraphosphonates
Comparison of urinary scents of two related mouse species, Mus spicilegus and Mus domesticus.
International audienceWhereas the house mouse (Mus domesticus) has been studied extensively in terms of physiology/behavior and pheromonal attributes, the evolutionarily related mound-building mouse (Mus spicilegus) has received attention only recently due to its divergent behavioral traits related to olfaction. To date, no chemical studies on urinary volatile compounds have been performed on M. spicilegus. The rationale for our investigations was to determine if there are differences in urinary volatiles of intact and castrated M. spicilegus males and to explore further whether this species could utilize the same or structurally similar pheromones as the male house mouse, M. domesticus. The use of capillary gas chromatography/mass spectrometry (GC-MS) together with sorptive stir bar extraction sampling enabled quantitative comparisons between the intact and castrated M. spicilegus urinary profiles. Additionally, through GC-MS and atomic emission (sulfur-selective) detection, we identified qualitative molecular differences between intact M. spicilegus and M. domesticus. A series of volatile and odoriferous lactones and the presence of coumarin were the unique features of M. spicilegus, as was the notable absence of 2-sec-butyl-4,5-dihydrothiazole (a prominent M. domesticus male pheromone) and other sulfur-containing compounds. Castration of M. spicilegus males eliminated several substances, including delta-hexalactone and gamma-octalactone, and substantially decreased additional compounds, suggesting their possible role in chemical communication. Some other M. domesticus pheromone components were also found in M. spicilegus urine. These comparative chemical analyses support the notion of metabolic similarities as well as the uniqueness of some volatiles for M. spicilegus, which may have a distinct physiological function in reproduction and behavior
Vortex motion in a finite-size easy-plane ferromagnet and application to a nanodot
We study the motion of a non-planar vortex in a circular easy-plane
ferromagnet, which imitates a magnetic nanodot. Analysis was done using
numerical simulations and a new collective variable theory which includes the
coupling of Goldstone-like mode with the vortex center. Without magnetic field
the vortex follows a spiral orbit which we calculate. When a rotating in-plane
magnetic field is included, the vortex tends to a stable limit cycle which
exists in a significant range of field amplitude B and frequency for a
given system size L. For a fixed , the radius R of the orbital motion
is proportional to L while the orbital frequency varies as 1/L and is
significantly smaller than . Since the limit cycle is caused by the
interplay between the magnetization and the vortex motion, the internal mode is
essential in the collective variable theory which then gives the correct
estimate and dependency for the orbit radius . Using this
simple theory we indicate how an ac magnetic field can be used to control
vortices observed in real magnetic nanodots.Comment: 15 pages (RevTeX), 14 figures (eps
Noise-induced switching between vortex states with different polarization in classical two-dimensional easy-plane magnets
In the 2-dimensional anisotropic Heisenberg model with XY-symmetry there are
non-planar vortices which exhibit a localized structure of the z-components of
the spins around the vortex center. We study how thermal noise induces a
transition of this structure from one polarization to the opposite one. We
describe the vortex core by a discrete Hamiltonian and consider a stationary
solution of the Fokker-Planck equation. We find a bimodal distribution function
and calculate the transition rate using Langer's instanton theory (1969). The
result is compared with Langevin dynamics simulations for the full many-spin
model.Comment: 15 pages, 4 figures, Phys. Rev. B., in pres
Topological solitons in highly anisotropic two dimensional ferromagnets
e study the solitons, stabilized by spin precession in a classical
two--dimensional lattice model of Heisenberg ferromagnets with non-small
easy--axis anisotropy. The properties of such solitons are treated both
analytically using the continuous model including higher then second powers of
magnetization gradients, and numerically for a discrete set of the spins on a
square lattice. The dependence of the soliton energy on the number of spin
deviations (bound magnons) is calculated. We have shown that the
topological solitons are stable if the number exceeds some critical value
. For and the intermediate values of anisotropy
constant ( is an exchange constant), the soliton
properties are similar to those for continuous model; for example, soliton
energy is increasing and the precession frequency is decreasing
monotonously with growth. For high enough anisotropy we found some fundamentally new soliton features absent for continuous
models incorporating even the higher powers of magnetization gradients. For
high anisotropy, the dependence of soliton energy E(N) on the number of bound
magnons become non-monotonic, with the minima at some "magic" numbers of bound
magnons. Soliton frequency have quite irregular behavior with
step-like jumps and negative values of for some regions of . Near
these regions, stable static soliton states, stabilized by the lattice effects,
exist.Comment: 17 page
Switching between different vortex states in 2-dimensional easy-plane magnets due to an ac magnetic field
Using a discrete model of 2-dimensional easy-plane classical ferromagnets, we
propose that a rotating magnetic field in the easy plane can switch a vortex
from one polarization to the opposite one if the amplitude exceeds a threshold
value, but the backward process does not occur. Such switches are indeed
observed in computer simulations.Comment: 4 pages, 4 figures, submitted to Phys. Rev. Let
Internal Modes and Magnon Scattering on Topological Solitons in 2d Easy-Axis Ferromagnets
We study the magnon modes in the presence of a topological soliton in a 2d
Heisenberg easy-axis ferromagnet. The problem of magnon scattering on the
soliton with arbitrary relation between the soliton radius R and the "magnetic
length" Delta_0 is investigated for partial modes with different values of the
azimuthal quantum numbers m. Truly local modes are shown to be present for all
values of m, when the soliton radius is enough large. The eigenfrequencies of
such internal modes are calculated analytically on limiting case of a large
soliton radius and numerically for arbitrary soliton radius. It is demonstrated
that the model of an isotropic magnet, which admits an exact analytical
investigation, is not adequate even for the limit of small radius solitons,
R<<Delta_0: there exists a local mode with nonzero frequency. We use the data
about local modes to derive the effective equation of soliton motion; this
equation has the usual Newtonian form in contrast to the case of the easy-plane
ferromagnet. The effective mass of the soliton is found.Comment: 33 pages (REVTeX), 12 figures (EPS
Plant cell division is specifically affected by nitrotyrosine
Virtually all eukaryotic α-tubulins harbour a C-terminal tyrosine that can be reversibly removed and religated, catalysed by a specific tubulinâtyrosine carboxypeptidase (TTC) and a specific tubulinâtyrosine ligase (TTL), respectively. The biological function of this post-translational modification has remained enigmatic. 3-nitro-L-tyrosine (nitrotyrosine, NO2Tyr), can be incorporated into detyrosinated α-tubulin instead of tyrosine, producing irreversibly nitrotyrosinated α-tubulin. To gain insight into the possible function of detyrosination, the effect of NO2Tyr has been assessed in two plant model organisms (rice and tobacco). NO2Tyr causes a specific, sensitive, and dose-dependent inhibition of cell division that becomes detectable from 1âh after treatment and which is not observed with non-nitrosylated tyrosine. These effects are most pronounced in cycling tobacco BY-2 cells, where the inhibition of cell division is accompanied by a stimulation of cell length, and a misorientation of cross walls. NO2Tyr reduces the abundance of the detyrosinated form of α-tubulin whereas the tyrosinated α-tubulin is not affected. These findings are discussed with respect to a model where NO2Tyr is accepted as substrate by TTL and subsequently blocks TTC activity. The irreversibly tyrosinated α-tubulin impairs microtubular functions that are relevant to cell division in general, and cell wall deposition in particular
- âŠ