3,995 research outputs found

    Size distributions of shocks and static avalanches from the Functional Renormalization Group

    Full text link
    Interfaces pinned by quenched disorder are often used to model jerky self-organized critical motion. We study static avalanches, or shocks, defined here as jumps between distinct global minima upon changing an external field. We show how the full statistics of these jumps is encoded in the functional-renormalization-group fixed-point functions. This allows us to obtain the size distribution P(S) of static avalanches in an expansion in the internal dimension d of the interface. Near and above d=4 this yields the mean-field distribution P(S) ~ S^(-3/2) exp(-S/[4 S_m]) where S_m is a large-scale cutoff, in some cases calculable. Resumming all 1-loop contributions, we find P(S) ~ S^(-tau) exp(C (S/S_m)^(1/2) -B/4 (S/S_m)^delta) where B, C, delta, tau are obtained to first order in epsilon=4-d. Our result is consistent to O(epsilon) with the relation tau = 2-2/(d+zeta), where zeta is the static roughness exponent, often conjectured to hold at depinning. Our calculation applies to all static universality classes, including random-bond, random-field and random-periodic disorder. Extended to long-range elastic systems, it yields a different size distribution for the case of contact-line elasticity, with an exponent compatible with tau=2-1/(d+zeta) to O(epsilon=2-d). We discuss consequences for avalanches at depinning and for sandpile models, relations to Burgers turbulence and the possibility that the above relations for tau be violated to higher loop order. Finally, we show that the avalanche-size distribution on a hyper-plane of co-dimension one is in mean-field (valid close to and above d=4) given by P(S) ~ K_{1/3}(S)/S, where K is the Bessel-K function, thus tau=4/3 for the hyper plane.Comment: 34 pages, 30 figure

    On certain finiteness questions in the arithmetic of modular forms

    Get PDF
    We investigate certain finiteness questions that arise naturally when studying approximations modulo prime powers of p-adic Galois representations coming from modular forms. We link these finiteness statements with a question by K. Buzzard concerning p-adic coefficient fields of Hecke eigenforms. Specifically, we conjecture that for fixed N, m, and prime p with p not dividing N, there is only a finite number of reductions modulo p^m of normalized eigenforms on \Gamma_1(N). We consider various variants of our basic finiteness conjecture, prove a weak version of it, and give some numerical evidence.Comment: 25 pages; v2: one of the conjectures from v1 now proved; v3: restructered parts of the article; v4: minor corrections and change

    Distribution of velocities in an avalanche

    Full text link
    For a driven elastic object near depinning, we derive from first principles the distribution of instantaneous velocities in an avalanche. We prove that above the upper critical dimension, d >= d_uc, the n-times distribution of the center-of-mass velocity is equivalent to the prediction from the ABBM stochastic equation. Our method allows to compute space and time dependence from an instanton equation. We extend the calculation beyond mean field, to lowest order in epsilon=d_uc-d.Comment: 4 pages, 2 figure

    Spatial competition between health care providers: effects of standardization

    Get PDF
    In the international health care literature there is a broad discussion on impacts of competition in health care markets. But aspects of standardization in regional health care markets with no price competition received comparatively little attention. We use a typical Hotelling-framework (reference case) to analyze a regional health care market with two health care providers competing in (vertical) quality after the scope of medical treatment is set (horizontal quality). We conclude, that in the reference case both health care provider will use vertical quality to separate from each other. In the next step (standardization case) we introduce one health care provider to be the standard leader in vertical quality. In the standardization case a more homogeneous supply can be expected. But, there is a higher possibility that the standard follower has to leave the regional health care market. --
    corecore