4 research outputs found
Charge Solitons in 1-D Arrays of Serially Coupled Josephson Junctions
We study a 1-D array of Josephson coupled superconducting grains with kinetic
inductance which dominates over the Josephson inductance. In this limit the
dynamics of excess Cooper pairs in the array is described in terms of charge
solitons, created by polarization of the grains. We analyze the dynamics of
these topological excitations, which are dual to the fluxons in a long
Josephson junction, using the continuum sine-Gordon model. We find that their
classical relativistic motion leads to saturation branches in the I-V
characteristic of the array. We then discuss the semi-classical quantization of
the charge soliton, and show that it is consistent with the large kinetic
inductance of the array. We study the dynamics of a quantum charge soliton in a
ring-shaped array biased by an external flux through its center. If the
dephasing length of the quantum charge soliton is larger than the circumference
of the array, quantum phenomena like persistent current and coherent current
oscillations are expected. As the characteristic width of the charge soliton is
of the order of 100 microns, it is a macroscopic quantum object. We discuss the
dephasing mechanisms which can suppress the quantum behaviour of the charge
soliton.Comment: 26 pages, LaTex, 7 Postscript figure