2 research outputs found

    Stochastic Resonance in Ion Channels Characterized by Information Theory

    Full text link
    We identify a unifying measure for stochastic resonance (SR) in voltage dependent ion channels which comprises periodic (conventional), aperiodic and nonstationary SR. Within a simplest setting, the gating dynamics is governed by two-state conductance fluctuations, which switch at random time points between two values. The corresponding continuous time point process is analyzed by virtue of information theory. In pursuing this goal we evaluate for our dynamics the tau-information, the mutual information and the rate of information gain. As a main result we find an analytical formula for the rate of information gain that solely involves the probability of the two channel states and their noise averaged rates. For small voltage signals it simplifies to a handy expression. Our findings are applied to study SR in a potassium channel. We find that SR occurs only when the closed state is predominantly dwelled. Upon increasing the probability for the open channel state the application of an extra dose of noise monotonically deteriorates the rate of information gain, i.e., no SR behavior occurs.Comment: 10 pages, 2 figures, to appear in Phys. Rev.

    Information geometry of quantum resources

    No full text
    I review recent works showing that information geometry is a useful framework to characterize quantum coherence and entanglement. Quantum systems exhibit peculiar properties which cannot be justified by classical physics, e.g. quantum coherence and quantum correlations. Once confined to thought experiments, they are nowadays created and manipulated by exerting an exquisite experimental control of atoms, molecules and photons. It is important to identify and quantify such quantum features, as they are deemed to be key resources to achieve supraclassical performances in computation and communication protocols. The information geometry viewpoint elucidates the advantage provided by quantum superpositions in phase estimation. Also, it enables to link measures of coherence and entanglement to observables, which can be evaluated in a laboratory by a limited number of measurements
    corecore