494 research outputs found

    Angle-resolved photoemission spectroscopy of perovskite-type transition-metal oxides and their analyses using tight-binding band structure

    Full text link
    Nowadays it has become feasible to perform angle-resolved photoemission spectroscopy (ARPES) measurements of transition-metal oxides with three-dimensional perovskite structures owing to the availability of high-quality single crystals of bulk and epitaxial thin films. In this article, we review recent experimental results and interpretation of ARPES data using empirical tight-binding band-structure calculations. Results are presented for SrVO3_3 (SVO) bulk single crystals, and La1−x_{1-x}Srx_xFeO3_3 (LSFO) and La1−x_{1-x}Srx_xMnO3_3 (LSMO) thin films. In the case of SVO, from comparison of the experimental results with calculated surface electronic structure, we concluded that the obtained band dispersions reflect the bulk electronic structure. The experimental band structures of LSFO and LSMO were analyzed assuming the G-type antiferromagnetic state and the ferromagnetic state, respectively. We also demonstrated that the intrinsic uncertainty of the electron momentum perpendicular to the crystal surface is important for the interpretation of the ARPES results of three-dimensional materials.Comment: 25 pages, 12 figure

    The Coupled Modified Korteweg-de Vries Equations

    Full text link
    Generalization of the modified KdV equation to a multi-component system, that is expressed by (∂ui)/(∂t)+6(∑j,k=0M−1Cjkujuk)(∂ui)/(∂x)+(∂3ui)/(∂x3)=0,i=0,1,...,M−1(\partial u_i)/(\partial t) + 6 (\sum_{j,k=0}^{M-1} C_{jk} u_j u_k) (\partial u_i)/(\partial x) + (\partial^3 u_{i})/(\partial x^3) = 0, i=0, 1, ..., M-1 , is studied. We apply a new extended version of the inverse scattering method to this system. It is shown that this system has an infinite number of conservation laws and multi-soliton solutions. Further, the initial value problem of the model is solved.Comment: 26 pages, LaTex209 file, uses jpsj.st

    Graphical representation of the partition function for a 1-D delta-function Bose gas

    Full text link
    One-dimensional repulsive delta-function bose system is studied. By only using the Bethe ansatz equation, n-particle partition functions are exactly calculated. From this expression for the n-particle partition function, the n-particle cluster integral is derived. The results completely agree with those of the thermal Bethe ansatz (TBA). This directly proves the validity of the TBA. The theory of partitions and graphs is used to simplify the discussion.Comment: 15 page

    Madelung potentials and covalency effect in strained La1−x_{1-x}Srx_xMnO3_3 thin films studied by core-level photoemission spectroscopy

    Full text link
    We have investigated the shifts of the core-level photoemission spectra of La0.6_{0.6}Sr0.4_{0.4}MnO3_3 thin films grown on three kinds of substrates, SrTiO3_3, (LaAlO3_3)0.3_{0.3}-(SrAl0.5_{0.5}Ta0.5_{0.5}O3_3)0.7_{0.7}, and LaAlO3_3. The experimental shifts of the La 4d and Sr 3d core levels are almost the same as the calculation, which we attribute to the absence of covalency effects on the Madelung potentials at these atomic sites due to the nearly ionic character of these atoms. On the other hand, the experimental shifts of the O 1s1s and Mn 2p2p core levels are negligibly small, in disagreement with the calculation. We consider that this is due to the strong covalent character of the Mn-O bonds.Comment: 4 pages, 5 figure

    In-situ photoemission study of Pr_{1-x}Ca_xMnO_3 epitaxial thin films with suppressed charge fluctuations

    Full text link
    We have performed an {\it in-situ} photoemission study of Pr_{1-x}Ca_xMnO_3 (PCMO) thin films grown on LaAlO_3 (001) substrates and observed the effect of epitaxial strain on the electronic structure. We found that the chemical potential shifted monotonically with doping, unlike bulk PCMO, implying the disappearance of incommensurate charge fluctuations of bulk PCMO. In the valence-band spectra, we found a doping-induced energy shift toward the Fermi level (E_F) but there was no spectral weight transfer, which was observed in bulk PCMO. The gap at E_F was clearly seen in the experimental band dispersions determined by angle-resolved photoemission spectroscopy and could not be explained by the metallic band structure of the C-type antiferromagnetic state, probably due to localization of electrons along the ferromagnetic chain direction or due to another type of spin-orbital ordering.Comment: 5 pages, 4 figure

    Partition Function for a 1-D delta-function Bose Gas

    Full text link
    The N-particle partition function of a one-dimensional δ\delta-function bose gas is calculated explicitly using only the periodic boundary condition (the Bethe ansatz equation). The N-particles cluster integrals are shown to be the same as those by the thermal Bethe ansatz method.Comment: 30 page

    Gradual Disappearance of the Fermi Surface near the Metal-Insulator Transition in La1−x_{1-x}Srx_{x}MnO3_{3}

    Full text link
    We report the first observation of changes in the electronic structure of La1−x_{1-x}Srx_{x}MnO3_{3} (LSMO) across the filling-control metal-insulator (MI) transition by means of in situ angle-resolved photoemission spectroscopy (ARPES) of epitaxial thin films. The Fermi surface gradually disappears near the MI transition by transferring the spectral weight from the coherent band near the Fermi level (EFE_{F}) to the lower Hubbard band, whereas a pseudogap behavior also exists in the ARPES spectra in the close vicinity of EFE_{F} for the metallic LSMO. These results indicate that the spectral weight transfer derived from strong electron-electron interaction dominates the gap formation in LSMO associated with the filling-control MI transition.Comment: 11 pages, 4 figure

    Systematic tight-binding analysis of ARPES spectra of transition-metal oxides

    Full text link
    We have performed systematic tight-binding (TB) analyses of the angle-resolved photoemission spectroscopy (ARPES) spectra of transition-metal (TM) oxides AMMO3_3 (M=M= Ti, V, Mn, and Fe) with the perovskite-type structure and compared the obtained parameters with those obtained from configuration-interaction (CI) cluster-model analyses of photoemission spectra. The values of ϵd−ϵp\epsilon_d-\epsilon_p from ARPES are found to be similar to the charge-transfer energy Δ\Delta from O 2p2p orbitals to empty TM 3d orbitals and much larger than Δ−U/2\Delta-U/2 (UU: on-site Coulomb energy) expected for Mott-Hubbard-type compounds including SrVO3_3. ϵd−ϵp\epsilon_d-\epsilon_p values from {\it ab initio} band-structure calculations show similar behaviors to those from ARPES. The values of the p−dp-d transfer integrals to describe the global electronic structure are found to be similar in all the estimates, whereas additional narrowing beyond the TB description occurs in the ARPES spectra of the dd band.Comment: 5 pages, 3 figure
    • …
    corecore