1,554 research outputs found

    On the exact electric and magnetic fields of an electric dipole

    Full text link
    We derive from Jefimenko's equations a multipole expansion in order to obtain the exact expressions for the electric and magnetic fields of an electric dipole with an arbitrary time dependence. A few comments are also made about the usual expositions found in most common undergraduate and graduate textbooks as well as in the literature on this topic

    Effects of geometric anisotropy on local field distribution: Ewald-Kornfeld formulation

    Full text link
    We have applied the Ewald-Kornfeld formulation to a tetragonal lattice of point dipoles, in an attempt to examine the effects of geometric anisotropy on the local field distribution. The various problems encountered in the computation of the conditionally convergent summation of the near field are addressed and the methods of overcoming them are discussed. The results show that the geometric anisotropy has a significant impact on the local field distribution. The change in the local field can lead to a generalized Clausius-Mossotti equation for the anisotropic case.Comment: Accepted for publications, Journal of Physics: Condensed Matte

    A New High Pressure Droplet Vaporization Model for Diesel Engine Modeling

    Full text link
    A droplet vaporization model has been developed for use in high pressure spray modeling. The model is a modification of the common Spalding vaporization model that accounts for the effects of high pressure on phase equilibrium, transport properties, and surface tension. The new model allows for a nonuniform temperature within the liquid by using a simple 2-zone model for the droplet. The effects of the different modifications are tested both for the case of a single vaporizing droplet in a quiescent environment as well as for a high pressure spray using the KIVA II code. Comparisons with vaporizing spray experiments show somewhat improved spray penetration predictions. Also, the effect of the vaporization model on diesel combustion predictions was studied by applying the models to simulate the combustion process in a heavy duty diesel engine. In this case the standard and High Pressure vaporization models were found to give similar heat release and emissions results. However, the results show that a more realistic representation of the vaporization process is achieved with the new model. In particular, less unburned fuel is predicted to remain in the combustion chamber late in the power stroke

    Four Poynting Theorems

    Full text link
    The Poynting vector is an invaluable tool for analysing electromagnetic problems. However, even a rigorous stress-energy tensor approach can still leave us with the question: is it best defined as \Vec{E} \cross \Vec{H} or as \Vec{D} \cross \Vec{B}? Typical electromagnetic treatments provide yet another perspective: they regard \Vec{E} \cross \Vec{B} as the appropriate definition, because \Vec{E} and \Vec{B} are taken to be the fundamental electromagnetic fields. The astute reader will even notice the fourth possible combination of fields: i.e. \Vec{D} \cross \Vec{H}. Faced with this diverse selection, we have decided to treat each possible flux vector on its merits, deriving its associated energy continuity equation but applying minimal restrictions to the allowed host media. We then discuss each form, and how it represents the response of the medium. Finally, we derive a propagation equation for each flux vector using a directional fields approach; a useful result which enables further interpretation of each flux and its interaction with the medium.Comment: 8 pages. Updated slightly from EJP versio

    The Effect of the Short-Range Correlations on the Generalized Momentum Distribution in Finite Nuclei

    Full text link
    The effect of dynamical short-range correlations on the generalized momentum distribution n(p⃗,Q⃗)n(\vec{p},\vec{Q}) in the case of Z=NZ=N, ℓ\ell-closed shell nuclei is investigated by introducing Jastrow-type correlations in the harmonic-oscillator model. First, a low order approximation is considered and applied to the nucleus 4^4He. Compact analytical expressions are derived and numerical results are presented and the effect of center-of-mass corrections is estimated. Next, an approximation is proposed for n(p⃗,Q⃗)n(\vec{p}, \vec{Q}) of heavier nuclei, that uses the above correlated n(p⃗,Q⃗)n(\vec{p},\vec{Q}) of 4^4He. Results are presented for the nucleus 16^{16}O. It is found that the effect of short-range correlations is significant for rather large values of the momenta pp and/or QQ and should be included, along with center of mass corrections for light nuclei, in a reliable evaluation of n(p⃗,Q⃗)n(\vec{p},\vec{Q}) in the whole domain of pp and QQ.Comment: 29 pages, 8 figures. Further results, figures and discussion for the CM corrections are added. Accepted by Journal of Physics

    SR9009 administered for one day after myocardial ischemia-reperfusion prevents heart failure in mice by targeting the cardiac inflammasome

    Get PDF
    Reperfusion of patients after myocardial infarction (heart attack) triggers cardiac inflammation that leads to infarct expansion and heart failure (HF). We previously showed that the circadian mechanism is a critical regulator of reperfusion injury. However, whether pharmacological targeting using circadian medicine limits reperfusion injury and protects against HF is unknown. Here, we show that short-term targeting of the circadian driver REV-ERB with SR9009 benefits long-term cardiac repair post-myocardial ischemia reperfusion in mice. Gain and loss of function studies demonstrate specificity of targeting REV-ERB in mice. Treatment for just one day abates the cardiac NLRP3 inflammasome, decreasing immunocyte recruitment, and thereby allowing the vulnerable infarct to heal. Therapy is given in vivo, after reperfusion, and promotes efficient repair. This study presents downregulation of the cardiac inflammasome in fibroblasts as a cellular target of SR9009, inviting more targeted therapeutic investigations in the future
    • …
    corecore