505 research outputs found
Exposing the human nude phenotype [4]
Peer reviewedSubmitted Versio
Hyperon-hyperon interactions and properties of neutron matter
We present results from Brueckner-Hartree-Fock calculatons for beta stable
neutron star matter with nucleonic and hyperonic degress degrees of freedom,
employing the most recent parametrizations of the baryon-baryon interaction of
the Nijmegen group. It is found that the only strange baryons emergin in beta
stable matter up to total barionic densities of 1.2 fm^-3 are and
. The corresponding equations of state are then used to compute
properties of neutron stars such as masses and radii.Comment: 27 pages, LateX, includes 8 PostScript figures, (submitted to PRC
Warm strange hadronic matter in an effective model with a weak Y-Y interaction
An effective model is used to study the equation of state of warm strange
hadronic matter with nucleons, Lambda-hyperons, Xi-hyperons, sigmastar and phi.
In the calculation, a newest weak Y-Y interaction deduced from the recent
observation of a He double hypernucleus is adopted. Employing this effective
model, the results with strong Y-Y interaction and weak Y-Y interaction are
compared.Comment: 9 pages, 9 figure
Neutron Star Constraints on the H Dibaryon
We study the influence of a possible H dibaryon condensate on the equation of
state and the overall properties of neutron stars whose population otherwise
contains nucleons and hyperons. In particular, we are interested in the
question of whether neutron stars and their masses can be used to say anything
about the existence and properties of the H dibaryon. We find that the equation
of state is softened by the appearance of a dibaryon condensate and can result
in a mass plateau for neutron stars. If the limiting neutron star mass is about
that of the Hulse-Taylor pulsar a condensate of H dibaryons of vacuum mass 2.2
GeV and a moderately attractive potential in the medium could not be ruled out.
On the other hand, if the medium potential were even moderately repulsive, the
H, would not likely exist in neutron stars. If neutron stars of about 1.6 solar
mass were known to exist, attractive medium effects for the H could be ruled
out. Certain ranges of dibaryon mass and potential can be excluded by the mass
of the Hulse-Taylor pulsar which we illustrate graphically.Comment: Revised by the addition of a figure showing the region of dibaryon
mass and potential excluded by the Hulse-Taylor pulsar. 18 pages, 11 figures,
latex (submitted to Phys. Rev. C
The Synthesis Telescope at the Dominion Radio Astrophysical Observatory
We describe an aperture synthesis radio telescope optimized for studies of
the Galactic interstellar medium (ISM), providing the ability to image extended
structures with high angular resolution over wide fields. The telescope
produces images of atomic hydrogen emission using the 21-cm HI spectral line,
and, simultaneously, continuum emission in two bands centred at 1420 MHz and
408 MHz, including linearly polarized emission at 1420 MHz, with synthesized
beams of 1 degree and 3.4 degrees at the respective frequencies.Comment: Accepted for publication by Astronomy and Astrophysics, Supplement
Serie
Dihyperon in Chiral Colour Dielectric Model
The mass of dihyperon with spin, parity and isospin
is calculated in the framework of Chiral colour dielectric model. The wave
function of the dihyperon is expressed as a product of two colour-singlet
baryon clusters. Thus the quark wave functions within the cluster are
antisymmetric. Appropriate operators are then used to antisymmetrize
inter-cluster quark wave functions. The radial part of the quark wavefunctions
are obtained by solving the the quark and dielectric field equations of motion
obtained in the Colour dielectric model. The mass of the dihyperon is computed
by including the colour magnetic energy as well as the energy due to meson
interaction. The recoil correction to the dihyperon mass is incorporated by
Peierls-Yoccoz technique. We find that the mass of the dihyperon is smaller
than the threshold by over 100 MeV. The implications of our
results on the present day relativistic heavy ion experiments is discussed.Comment: LaTeX, 13 page
Nuclei, Superheavy Nuclei and Hypermatter in a chiral SU(3)-Modell
A model based on chiral SU(3)-symmetry in nonlinear realisation is used for
the investigation of nuclei, superheavy nuclei, hypernuclei and multistrange
nuclear objects (so called MEMOs). The model works very well in the case of
nuclei and hypernuclei with one Lambda-particle and rules out MEMOs. Basic
observables which are known for nuclei and hypernuclei are reproduced
satisfactorily. The model predicts Z=120 and N=172, 184 and 198 as the next
shell closures in the region of superheavy nuclei. The calculations have been
performed in self-consistent relativistic mean field approximation assuming
spherical symmetry. The parameters were adapted to known nuclei.Comment: 19 pages, 11 figure
Detectability of Strange Matter in Heavy Ion Experiments
We discuss the properties of two distinct forms of hypothetical strange
matter, small lumps of strange quark matter (strangelets) and of hyperon matter
(metastable exotic multihypernuclear objects: MEMOs), with special emphasis on
their relevance for present and future heavy ion experiments. The masses of
small strangelets up to A = 40 are calculated using the MIT bag model with
shell mode filling for various bag parameters. The strangelets are checked for
possible strong and weak hadronic decays, also taking into account multiple
hadron decays. It is found that strangelets which are stable against strong
decay are most likely highly negative charged, contrary to previous findings.
Strangelets can be stable against weak hadronic decay but their masses and
charges are still rather high. This has serious impact on the present high
sensitivity searches in heavy ion experiments at the AGS and CERN facilities.
On the other hand, highly charged MEMOs are predicted on the basis of an
extended relativistic mean-field model. Those objects could be detected in
future experiments searching for short-lived, rare composites. It is
demonstrated that future experiments can be sensitive to a much wider variety
of strangelets.Comment: 26 pages, 5 figures, uses RevTeX and epsf.st
Pharmacokinetics of intramuscular tranexamic acid in bleeding trauma patients: a clinical trial.
BACKGROUND: Intravenous tranexamic acid (TXA) reduces bleeding deaths after injury and childbirth. It is most effective when given early. In many countries, pre-hospital care is provided by people who cannot give i.v. injections. We examined the pharmacokinetics of intramuscular TXA in bleeding trauma patients. METHODS: We conducted an open-label pharmacokinetic study in two UK hospitals. Thirty bleeding trauma patients received a loading dose of TXA 1 g i.v., as per guidelines. The second TXA dose was given as two 5 ml (0·5 g each) i.m. injections. We collected blood at intervals and monitored injection sites. We measured TXA concentrations using liquid chromatography coupled to mass spectrometry. We assessed the concentration time course using non-linear mixed-effect models with age, sex, ethnicity, body weight, type of injury, signs of shock, and glomerular filtration rate as possible covariates. RESULTS: Intramuscular TXA was well tolerated with only mild injection site reactions. A two-compartment open model with first-order absorption and elimination best described the data. For a 70-kg patient, aged 44 yr without signs of shock, the population estimates were 1.94 h-1 for i.m. absorption constant, 0.77 for i.m. bioavailability, 7.1 L h-1 for elimination clearance, 11.7 L h-1 for inter-compartmental clearance, 16.1 L volume of central compartment, and 9.4 L volume of the peripheral compartment. The time to reach therapeutic concentrations (5 or 10 mg L-1) after a single intramuscular TXA 1 g injection are 4 or 11 min, with the time above these concentrations being 10 or 5.6 h, respectively. CONCLUSIONS: In bleeding trauma patients, intramuscular TXA is well tolerated and rapidly absorbed. CLINICAL TRIAL REGISTRATION: 2019-000898-23 (EudraCT); NCT03875937 (ClinicalTrials.gov)
- …