107,882 research outputs found
Momentum distribution, vibrational dynamics and the potential of mean force in ice
By analyzing the momentum distribution obtained from path integral and phonon
calculations we find that the protons in hexagonal ice experience an
anisotropic quasi-harmonic effective potential with three distinct principal
frequencies that reflect molecular orientation. Due to the importance of
anisotropy, anharmonic features of the environment cannot be extracted from
existing experimental distributions that involve the spherical average. The
full directional distribution is required, and we give a theoretical prediction
for this quantity that could be verified in future experiments. Within the
quasi-harmonic context, anharmonicity in the ground state dynamics of the
proton is substantial and has quantal origin, a finding that impacts the
interpretation of several spectroscopies
Estimates of Effective Hubbard Model Parameters for C20 isomers
We report on an effective Hubbard Hamiltonian approach for the study of
electronic correlations in C isomers, cage, bowl and ring, with quantum
Monte Carlo and exact diagonalization methods. The tight-binding hopping
parameter, , in the effective Hamiltonian is determined by a fit to density
functional theory calculations, and the on-site Coulomb interaction, , is
determined by calculating the isomers' affinity energies, which are compared to
experimental values. For the C fullerene cage we estimate eV and . The resulting
effective Hamiltonian is then used to study the shift of spectral peaks in the
density of states of neutral and one-electron-doped C isomers. Energy
gaps are also extracted for possible future comparison with experiments.Comment: 6 pages, 5 figure
Galaxy alignment on large and small scales
Galaxies are not randomly distributed across the universe but showing
different kinds of alignment on different scales. On small scales satellite
galaxies have a tendency to distribute along the major axis of the central
galaxy, with dependence on galaxy properties that both red satellites and
centrals have stronger alignment than their blue counterparts. On large scales,
it is found that the major axes of Luminous Red Galaxies (LRGs) have
correlation up to 30Mpc/h. Using hydro-dynamical simulation with star
formation, we investigate the origin of galaxy alignment on different scales.
It is found that most red satellite galaxies stay in the inner region of dark
matter halo inside which the shape of central galaxy is well aligned with the
dark matter distribution. Red centrals have stronger alignment than blue ones
as they live in massive haloes and the central galaxy-halo alignment increases
with halo mass. On large scales, the alignment of LRGs is also from the
galaxy-halo shape correlation, but with some extent of mis-alignment. The
massive haloes have stronger alignment than haloes in filament which connect
massive haloes. This is contrary to the naive expectation that cosmic filament
is the cause of halo alignment.Comment: 4 pages, 3 figures, To appear in the proceedings of the IAU Symposium
308 "The Zeldovich Universe: Genesis and Growth of the Cosmic Web
Stereospecific synthesis of the aglycone of pseudopterosin E
No description supplie
Development of learning objectives for neurology in a veterinary curriculum: part I: undergraduates
Background
With an increasing caseload of veterinary neurology patients in first opinion practice, there is a requirement to establish relevant learning objectives for veterinary neurology encompassing knowledge, skills and attitudes for veterinary undergraduate students in Europe. With help of experts in veterinary neurology from the European College of Veterinary Neurology (ECVN) and the European Society of Veterinary Neurology (ESVN) a survey of veterinary neurologic learning objectives using a modified Delphi method was conducted. The first phase comprised the development of a draft job description and learning objectives by a working group established by the ECVN. In the second phase, a quantitative questionnaire (multiple choice, Likert scale and free text) covering 140 learning objectives and subdivided into 8 categories was sent to 341 ESVN and ECVN members and a return rate of 62% (n = 213/341) was achieved.
Results
Of these 140 learning objectives ECVN Diplomates and ESVN members considered 42 (30%) objectives as not necessary for standard clinical veterinary neurology training, 94 (67%) were graded to be learned at a beginner level and 4 (3%) at an advanced level. The following objectives were interpreted as the most important day one skills: interpret laboratory tests, perform a neurological examination and establish a neuroanatomical localization. In this survey the three most important diseases of the central nervous system included epilepsy, intervertebral disc disease and inflammatory diseases. The three most important diseases of the peripheral nervous system included polyradiculoneuritis, myasthenia gravis and toxic neuropathies.
Conclusions
The results of this study should help to reform the veterinary curriculum regarding neurology and may reduce the phenomenon of “Neurophobia”.</p
Origin of electron-hole asymmetry in the scanning tunneling spectrum of
We have developed a material specific theoretical framework for modelling
scanning tunneling spectroscopy (STS) of high temperature superconducting
materials in the normal as well as the superconducting state. Results for
(Bi2212) show clearly that the tunneling process
strongly modifies the STS spectrum from the local density of states (LDOS) of
the orbital of Cu. The dominant tunneling channel to the surface
Bi involves the orbitals of the four neighbouring Cu atoms. In
accord with experimental observations, the computed spectrum displays a
remarkable asymmetry between the processes of electron injection and
extraction, which arises from contributions of Cu and other orbitals
to the tunneling current.Comment: 5 pages, 4 figures, published in PR
- …