33,439 research outputs found

    Clock and Trigger Synchronization between Several Chassis of Digital Data Acquisition Modules

    Full text link
    In applications with segmented high purity Ge detectors or other detector arrays with tens or hundreds of channels, where the high development cost and limited flexibility of application specific integrated circuits outweigh their benefits of low power and small size, the readout electronics typically consist of multi-channel data acquisition modules in a common chassis for power, clock and trigger distribution, and data readout. As arrays become larger and reach several hundred channels, the readout electronics have to be divided over several chassis, but still must maintain precise synchronization of clocks and trigger signals across all channels. This division becomes necessary not only because of limits given by the instrumentation standards on module size and chassis slot numbers, but also because data readout times increase when more modules share the same data bus and because power requirements approach the limits of readily available power supplies. In this paper, we present a method for distributing clocks and triggers between 4 PXI chassis containing DGF Pixie-16 modules with up to 226 acquisition channels per chassis in a data acquisition system intended to instrument the over 600 channels of the SeGA detector array at the National Superconducting Cyclotron Laboratory. Our solution is designed to achieve synchronous acquisition of detector waveforms from all channels with a jitter of less then 1 ns, and can be extended to a larger number of chassis if desired.Comment: CAARI 200

    Semi-classical States in Homogeneous Loop Quantum Cosmology

    Get PDF
    Semi-classical states in homogeneous loop quantum cosmology (LQC) are constructed by two different ways. In the first approach, we firstly construct an exponentiated annihilation operator. Then a kind of semi-classical (coherent) state is obtained by solving the eigen-equation of that operator. Moreover, we use these coherent states to analyze the semi-classical limit of the quantum dynamics. It turns out that the Hamiltonian constraint operator employed currently in homogeneous LQC has correct classical limit with respect to the coherent states. In the second approach, the other kind of semi-classical state is derived from the mathematical construction of coherent states for compact Lie groups due to Hall.Comment: 13 pages, submitted to CQ

    Bond-Propagation Algorithm for Thermodynamic Functions in General 2D Ising Models

    Full text link
    Recently, we developed and implemented the bond propagation algorithm for calculating the partition function and correlation functions of random bond Ising models in two dimensions. The algorithm is the fastest available for calculating these quantities near the percolation threshold. In this paper, we show how to extend the bond propagation algorithm to directly calculate thermodynamic functions by applying the algorithm to derivatives of the partition function, and we derive explicit expressions for this transformation. We also discuss variations of the original bond propagation procedure within the larger context of Y-Delta-Y-reducibility and discuss the relation of this class of algorithm to other algorithms developed for Ising systems. We conclude with a discussion on the outlook for applying similar algorithms to other models.Comment: 12 pages, 10 figures; submitte

    Exciton energy transfer in nanotube bundles

    Full text link
    Photoluminescence is commonly used to identify the electronic structure of individual nanotubes. But, nanotubes naturally occur in bundles. Thus, we investigate photoluminescence of nanotube bundles. We show that their complex spectra are simply explained by exciton energy transfer between adjacent tubes, whereby excitation of large gap tubes induces emission from smaller gap ones via Forster interaction between excitons. The consequent relaxation rate is faster than non-radiative recombination, leading to enhanced photoluminescence of acceptor tubes. This fingerprints bundles with different compositions and opens opportunities to optimize them for opto-electronics.Comment: 5 pages, 5 figure

    Self-aligned silicidation of surround gate vertical MOSFETs for low cost RF applications

    No full text
    We report for the first time a CMOS-compatible silicidation technology for surround-gate vertical MOSFETs. The technology uses a double spacer comprising a polysilicon spacer for the surround gate and a nitride spacer for silicidation and is successfully integrated with a Fillet Local OXidation (FILOX) process, which thereby delivers low overlap capacitance and high drive-current vertical devices. Silicided 80-nm vertical n-channel devices fabricated using 0.5-?m lithography are compared with nonsilicided devices. A source–drain (S/D) activation anneal of 30 s at 1100 ?C is shown to deliver a channel length of 80 nm, and the silicidation gives a 60% improvement in drive current in comparison with nonsilicided devices. The silicided devices exhibit a subthreshold slope (S) of 87 mV/dec and a drain-induced barrier lowering (DIBL) of 80 mV/V, compared with 86 mV/dec and 60 mV/V for nonsilicided devices. S-parameter measurements on the 80-nm vertical nMOS devices give an fT of 20 GHz, which is approximately two times higher than expected for comparable lateral MOSFETs fabricated using the same 0.5-?m lithography. Issues associated with silicidation down the pillar sidewall are investigated by reducing the activation anneal time to bring the silicided region closer to the p-n junction at the top of the pillar. In this situation, nonlinear transistor turn-on is observed in drain-on-top operation and dramatically degraded drive current in source-on-top operation. This behavior is interpreted using mixed-mode simulations, which show that a Schottky contact is formed around the perimeter of the pillar when the silicided contact penetrates too close to the top S/D junction down the side of the pillar

    Measurement of Scattering Rate and Minimum Conductivity in Graphene

    Full text link
    The conductivity of graphene samples with various levels of disorder is investigated for a set of specimens with mobility in the range of 120×1031-20\times10^3 cm2^2/V sec. Comparing the experimental data with the theoretical transport calculations based on charged impurity scattering, we estimate that the impurity concentration in the samples varies from 215×10112-15\times 10^{11} cm2^{-2}. In the low carrier density limit, the conductivity exhibits values in the range of 212e2/h2-12e^2/h, which can be related to the residual density induced by the inhomogeneous charge distribution in the samples. The shape of the conductivity curves indicates that high mobility samples contain some short range disorder whereas low mobility samples are dominated by long range scatterers.Comment: 4 pages 4 figure

    Performance Of Plate Distributor And Spray Nozzle For An Unpacked Saturator.

    Get PDF
    Saturator efficiency is vital in operational cost of dissolved air flotation plants as it would have an impact on the amount of recycle ratio required for satisfactory removal of suspended solids from the influent stream

    Shear and Layer Breathing Modes in Multilayer MoS2

    Full text link
    We study by Raman scattering the shear and layer breathing modes in multilayer MoS2. These are identified by polarization measurements and symmetry analysis. Their positions change with the number of layers, with different scaling for odd and even layers. A chain model explains the results, with general applicability to any layered material, and allows one to monitor their thickness
    corecore