1 research outputs found
Quantitative Simulation of the Superconducting Proximity Effect
A numerical method is developed to calculate the transition temperature of
double or multi-layers consisting of films of super- and normal conductors. The
approach is based on a dynamic interpretation of Gorkov's linear gap equation
and is very flexible. The mean free path of the different metals, transmission
through the interface, ratio of specular reflection to diffusive scattering at
the surfaces, and fraction of diffusive scattering at the interface can be
included. Furthermore it is possible to vary the mean free path and the BCS
interaction NV in the vicinity of the interface. The numerical results show
that the normalized initial slope of an SN double layer is independent of
almost all film parameters except the ratio of the density of states. There are
only very few experimental investigations of this initial slope and they
consist of Pb/Nn double layers (Nn stands for a normal metal). Surprisingly the
coefficient of the initial slope in these experiments is of the order or less
than 2 while the (weak coupling) theory predicts a value of about 4.5. This
discrepancy has not been recognized in the past. The autor suggests that it is
due to strong coupling behavior of Pb in the double layers. The strong coupling
gap equation is evaluated in the thin film limit and yields the value of 1.6
for the coefficient. This agrees much better with the few experimental results
that are available.
PACS: 74.45.+r, 74.62.-c, 74.20.F