2,980 research outputs found

    Subleading contributions to the three-nucleon contact interaction

    Get PDF
    We obtain a minimal form of the two-derivative three-nucleon contact Lagrangian, by imposing all constraints deriving from discrete symmetries, Fierz identities and Poincare' covariance. The resulting interaction, depending on 13 unknown low-energy constants, leads to a three-nucleon potential which we give in a local form in configuration space. We also consider the leading (no-derivative) four-nucleon interaction and show that there exists only one independent operator.Comment: 11 pages. Three more operators found after correcting some mistaken Fierz relation

    Breakup of three particles within the adiabatic expansion method

    Get PDF
    General expressions for the breakup cross sections in the lab frame for 1+21+2 reactions are given in terms of the hyperspherical adiabatic basis. The three-body wave function is expanded in this basis and the corresponding hyperradial functions are obtained by solving a set of second order differential equations. The S{\cal S}-matrix is computed by using two recently derived integral relations. Even though the method is shown to be well suited to describe 1+21+2 processes, there are nevertheless particular configurations in the breakup channel (for example those in which two particles move away close to each other in a relative zero-energy state) that need a huge number of basis states. This pathology manifests itself in the extremely slow convergence of the breakup amplitude in terms of the hyperspherical harmonic basis used to construct the adiabatic channels. To overcome this difficulty the breakup amplitude is extracted from an integral relation as well. For the sake of illustration, we consider neutron-deuteron scattering. The results are compared to the available benchmark calculations

    Coulomb effects in nucleon-deuteron polarization-transfer coefficients

    Get PDF
    Coulomb effects in the neutron-deuteron and proton-deuteron polarization-transfer coefficients KyyK_y^{y'}, KzxK_z^{x'}, KyxxyyK_y^{x'x'-y'y'} and KyzzK_y^{z'z'} are studied at energies above the deuteron breakup threshold. Theoretical predictions for these observables are evaluated in the framework of the Kohn Variational Principle using correlated basis functions to expand the three-nucleon scattering wave function. The two-nucleon Argonne v18v_{18} and the three-nucleon Urbana IX potentials are considered. In the proton-deuteron case, the Coulomb interaction between the two protons is included explicitly and the results are compared to the experimental data available at Elab=10,19,22.7E_{lab}=10,19,22.7 MeV. In the neutron-deuteron case, a comparison to a recent measurement of KyyK_y^{y'} by Hempen {\sl et al.} at Elab=19E_{lab}=19 MeV evidences a contribution of the calculated Coulomb effects opposite to those extracted from the experiment.Comment: 7 pages, 3 figure

    The harmonic hyperspherical basis for identical particles without permutational symmetry

    Full text link
    The hyperspherical harmonic basis is used to describe bound states in an AA--body system. The approach presented here is based on the representation of the potential energy in terms of hyperspherical harmonic functions. Using this representation, the matrix elements between the basis elements are simple, and the potential energy is presented in a compact form, well suited for numerical implementation. The basis is neither symmetrized nor antisymmetrized, as required in the case of identical particles; however, after the diagonalization of the Hamiltonian matrix, the eigenvectors reflect the symmetries present in it, and the identification of the physical states is possible, as it will be shown in specific cases. We have in mind applications to atomic, molecular, and nuclear few-body systems in which symmetry breaking terms are present in the Hamiltonian; their inclusion is straightforward in the present method. As an example we solve the case of three and four particles interacting through a short-range central interaction and Coulomb potential

    Four-nucleon scattering: a new numerical approach

    Get PDF
    The AGS equations are solved for n3Hn{}^3\mathrm{H} and p3Hep{}^3\mathrm{He} scattering including the Coulomb interaction. Comparison with previous work confirms the accuracy of the calculation and helps clarify a number of issues related to the n3Hn{}^3\mathrm{H} total cross section at the peak of the resonance region, as well as an AyA_y deficiency in p3Hep{}^3\mathrm{He}. Calculations are fully converged in terms of NNNN partial waves and involve no uncontrolled approximations.Comment: To be published in proceedings of the 18th International IUPAP Conference on Few-Body Problems in Physics, Santos, 21-26 August 200

    Neutron electromagnetic form factors and inclusive scattering of polarized electrons by polarized 3^{3}He and 3^{3}H targets

    Get PDF
    The electromagnetic inclusive responses of polarized 3^{3}He and 3^{3}H are thoroughly investigated at the quasielastic peak for squared momentum transfers up to 2(GeV/c)22 (GeV/c)^2, within the plane wave impulse approximation. Great emphasys is put on the effects in the bound-state due to different two- and three-body nuclear forces, and to the Coulomb interaction as well. A careful analysis of the polarized responses allows to select possible experiments for minimizing the model dependence in the extraction of the neutron electromagnetic form factors. In particular, the relevant role played by the proton in the transverse-longitudinal response of polarized 3^{3}He, at low momentum transfer, can be utilized for obtaining valuable information on the proton contribution to the total polarized response and eventually on the neutron charge form factor.Comment: 27 pages, Latex, 9 Postscript figures. To appear in Phys. Rev. C (July '97

    Implications of Efimov physics for the description of three and four nucleons in chiral effective field theory

    Full text link
    In chiral effective field theory the leading order (LO) nucleon-nucleon potential includes two contact terms, in the two spin channels S=0,1S=0,1, and the one-pion-exchange potential. When the pion degrees of freedom are integrated out, as in the pionless effective field theory, the LO potential includes two contact terms only. In the three-nucleon system, the pionless theory includes a three-nucleon contact term interaction at LO whereas the chiral effective theory does not. Accordingly arbitrary differences could be observed in the LO description of three- and four-nucleon binding energies. We analyze the two theories at LO and conclude that a three-nucleon contact term is necessary at this order in both theories. In turn this implies that subleading three-nucleon contact terms should be promoted to lower orders. Furthermore this analysis shows that one single low energy constant might be sufficient to explain the large values of the singlet and triplet scattering lengths.Comment: 5 pages, 3 figure
    corecore