203 research outputs found
A fast, very-high-energy γ -ray flare from BL Lacertae during a period of multi-wavelength activity in June 2015
The mechanisms producing fast variability of the γ-ray emission in active galactic nuclei (AGNs) are under debate. The MAGIC telescopes detected a fast, very-high-energy (VHE, E > 100 GeV) γ-ray flare from BL Lacertae on 2015 June 15. The flare had a maximum flux of (1.5 ± 0.3) × 10-10 photons cm-2 s-1 and halving time of 26 ± 8 min. The MAGIC observations were triggered by a high state in the optical and high-energy (HE, E > 100 MeV) γ-ray bands. In this paper we present the MAGIC VHE γ-ray data together with multi-wavelength data from radio, optical, X-rays, and HE γ rays from 2015 May 1 to July 31. Well-sampled multi-wavelength data allow us to study the variability in detail and compare it to the other epochs when fast, VHE γ-ray flares have been detected from this source. Interestingly, we find that the behaviour in radio, optical, X-rays, and HE γ-rays is very similar to two other observed VHE γ-ray flares. In particular, also during this flare there was an indication of rotation of the optical polarization angle and of activity at the 43 GHz core. These repeating patterns indicate a connection between the three events. We also test modelling of the spectral energy distribution based on constraints from the light curves and VLBA observations, with two different geometrical setups of two-zone inverse Compton models. In addition we model the γ-ray data with the star-jet interaction model. We find that all of the tested emission models are compatible with the fast VHE γ-ray flare, but all have some tension with the multi-wavelength observations
Measurement of the Extragalactic Background Light using MAGIC and Fermi-LAT gamma-ray observations of blazars up to z = 1
We present a measurement of the extragalactic background light (EBL) based on
a joint likelihood analysis of 32 gamma-ray spectra for 12 blazars in the
redshift range z = 0.03 to 0.944, obtained by the MAGIC telescopes and
Fermi-LAT. The EBL is the part of the diffuse extragalactic radiation spanning
the ultraviolet, visible and infrared bands. Major contributors to the EBL are
the light emitted by stars through the history of the universe, and the
fraction of it which was absorbed by dust in galaxies and re-emitted at longer
wavelengths. The EBL can be studied indirectly through its effect on very-high
energy photons that are emitted by cosmic sources and absorbed via
photon-photon interactions during their propagation across cosmological
distances. We obtain estimates of the EBL density in good agreement with
state-of-the-art models of the EBL production and evolution. The 1-sigma upper
bounds, including systematic uncertainties, are between 13% and 23% above the
nominal EBL density in the models. No anomaly in the expected transparency of
the universe to gamma rays is observed in any range of optical depth.We also
perform a wavelength-resolved EBL determination, which results in a hint of an
excess of EBL in the 0.18 - 0.62 m range relative to the studied models,
yet compatible with them within systematics.Comment: Accepted by MNRA
New Hard-TeV Extreme Blazars Detected with the MAGIC Telescopes
Extreme high-frequency-peaked BL Lac objects (EHBLs) are blazars that exhibit extremely energetic synchrotron emission. They also feature nonthermal gamma-ray emission whose peak lies in the very high-energy (VHE, E > 100 GeV) range, and in some sources exceeds 1 TeV: this is the case for hard-TeV EHBLs such as 1ES 0229+200. With the aim of increasing the EHBL population, 10 targets were observed with the MAGIC telescopes from 2010 to 2017, for a total of 265 hr of good-quality data. The data were complemented by coordinated Swift observations. The X-ray data analysis confirms that all but two sources are EHBLs. The sources show only a modest variability and a harder-when-brighter behavior, typical for this class of objects. At VHE gamma-rays, three new sources were detected and a hint of a signal was found for another new source. In each case, the intrinsic spectrum is compatible with the hypothesis of a hard-TeV nature of these EHBLs. The broadband spectral energy distributions (SEDs) of all sources are built and modeled in the framework of a single-zone, purely leptonic model. The VHE gamma-ray-detected sources were also interpreted with a spine-layer model and a proton synchrotron model. The three models provide a good description of the SEDs. However, the resulting parameters differ substantially in the three scenarios, in particular the magnetization parameter. This work presents the first mini catalog of VHE gamma-ray and multiwavelength observations of EHBLs
Detection of persistent VHE gamma-ray emission from PKS 1510-089 by the MAGIC telescopes during low states between 2012 and 2017
PKS 1510-089 is a flat spectrum radio quasar strongly variable in the optical and GeV range. To date, very high-energy (VHE, > 100 GeV) emission has been observed from this source either during long high states of optical and GeV activity or during short flares. Aims. We search for low-state VHE gamma-ray emission from PKS 1510-089. We characterize and model the source in a broadband context, which would provide a baseline over which high states and flares could be better understood. Methods. PKS 1510-089 has been monitored by the MAGIC telescopes since 2012. We use daily binned Fermi-LAT flux measurements of PKS 1510-089 to characterize the GeV emission and select the observation periods of MAGIC during low state of activity. For the selected times we compute the average radio, IR, optical, UV, X-ray, and gamma-ray emission to construct a low-state spectral energy distribution of the source. The broadband emission is modeled within an external Compton scenario with a stationary emission region through which plasma and magnetic fields are flowing. We also perform the emission-model-independent calculations of the maximum absorption in the broad line region (BLR) using two different models. Results. The MAGIC telescopes collected 75 hr of data during times when the Fermi-LAT flux measured above 1 GeV was below 3? × 10 -8 ? cm -2 ? s -1 , which is the threshold adopted for the definition of a low gamma-ray activity state. The data show a strongly significant (9.5¿) VHE gamma-ray emission at the level of (4.27 ± 0.61 stat ) × 10 -12 ? cm -2 ? s -1 above 150 GeV, a factor of 80 lower than the highest flare observed so far from this object. Despite the lower flux, the spectral shape is consistent with earlier detections in the VHE band. The broadband emission is compatible with the external Compton scenario assuming a large emission region located beyond the BLR. For the first time the gamma-ray data allow us to place a limit on the location of the emission region during a low gamma-ray state of a FSRQ. For the used model of the BLR, the 95% confidence level on the location of the emission region allows us to place it at a distance > 74% of the outer radius of the BLR. © ESO 2018.The financial support of the German BMBF and MPG, the Italian INFN and INAF, the Swiss National Fund SNF, the ERDF under the Spanish MINECO (FPA2015-69818-P, FPA2012-36668, FPA2015-68378-P, FPA2015-69210-C6-2-R, FPA2015-69210-C6-4-R, FPA2015-69210-C6-6-R, AYA2015-71042-P, AYA2016-76012-C3-1-P, ESP2015-71662-C2-2-P, CSD2009-00064), and the Japanese JSPS and MEXT is gratefully acknowledged. This work was also supported by the Spanish Centro de Exce-lencia “Severo Ochoa” SEV-2012-0234 and SEV-2015-0548, and Unidad de Excelencia “María de Maeztu” MDM-2014-0369, by the Croatian Science Foundation (HrZZ) Project IP-2016-06-9782 and the University of Rijeka Project 13.12.1.3.02, by the DFG Collaborative Research Centers SFB823/C4 and SFB876/C3, the Polish National Research Centre grant UMO-2016/22/M/ST9/00382, and by the Brazilian MCTIC, CNPq and FAPERJ. IA acknowledges support from a Ramón y Cajal grant of the Ministerio de Economía, Industria, y Competitividad (MINECO) of Spain. Acquisition and reduction of the POLAMI and MAPCAT data was supported in part by MINECO through grants AYA2010-14844, AYA2013-40825-P, and AYA2016-80889-P, and by the Regional Government of Andalucía through grant P09-FQM-4784.Peer Reviewe
Periastron Observations of TeV Gamma-Ray Emission from a Binary System with a 50-year Period
We report on observations of the pulsar / Be star binary system PSR J2032+4127 / MT91 213 in the energy range between 100 GeV and 20 TeV with the VERITAS and MAGIC imaging atmospheric Cherenkov telescope arrays. The binary orbit has a period of approximately 50 years, with the most recent periastron occurring on 2017 November 13. Our observations span from 18 months prior to periastron to one month after. A new, point-like, gamma-ray source is detected, coincident with the location of PSR J2032+4127 / MT91 213. The gamma-ray light curve and spectrum are well-characterized over the periastron passage. The flux is variable over at least an order of magnitude, peaking at periastron, thus providing a firm association of the TeV source with the pulsar / Be star system. Observations prior to periastron show a cutoff in the spectrum at an energy around 0.5 TeV. This result adds a new member to the small population of known TeV binaries, and it identifies only the second source of this class in which the nature and properties of the compact object are firmly established. We compare the gamma-ray results with the light curve measured with the X-ray Telescope (XRT) on board the Neil Gehrels Swift Observatory and with the predictions of recent theoretical models of the system. We conclude that significant revision of the models is required to explain the details of the emission we have observed, and we discuss the relationship between the binary system and the overlapping steady extended source, TeV J2032+4130
The Great Markarian 421 Flare of 2010 February: Multiwavelength Variability and Correlation Studies
We report on variability and correlation studies using multiwavelength observations of the blazar Mrk 421 during the month of 2010 February, when an extraordinary flare reaching a level of ∼27 Crab Units above 1 TeV was measured in very high energy (VHE) γ-rays with the Very Energetic Radiation Imaging Telescope Array System (VERITAS) observatory. This is the highest flux state for Mrk 421 ever observed in VHE γ-rays. Data are analyzed from a coordinated campaign across multiple instruments, including VHE γ-ray (VERITAS, Major Atmospheric Gamma-ray Imaging Cherenkov), high-energy γ-ray (Fermi-LAT), X-ray (Swift, Rossi X-ray Timing Experiment, MAXI), optical (including the GASP-WEBT collaboration and polarization data), and radio (Metsahovi, Owens Valley Radio Observatory, University of Michigan Radio Astronomy Observatory). Light curves are produced spanning multiple days before and after the peak of the VHE flare, including over several flare "decline" epochs. The main flare statistics allow 2 minute time bins to be constructed in both the VHE and optical bands enabling a cross-correlation analysis that shows evidence for an optical lag of ∼25-55 minutes, the first time-lagged correlation between these bands reported on such short timescales. Limits on the Doppler factor (δ ⪆ 33) and the size of the emission region (δ-1RB≲ 3.8 × 1013cm) are obtained from the fast variability observed by VERITAS during the main flare. Analysis of 10 minute binned VHE and X-ray data over the decline epochs shows an extraordinary range of behavior in the flux-flux relationship, from linear to quadratic to lack of correlation to anticorrelation. Taken together, these detailed observations of an unprecedented flare seen in Mrk 421 are difficult to explain with the classic single-zone synchrotron self-Compton model
A lower bound on intergalactic magnetic fields from time variability of 1ES 0229+200 from MAGIC and Fermi/LAT observations
Extended and delayed emission around distant TeV sources induced by the
effects of propagation of gamma rays through the intergalactic medium can be
used for the measurement of the intergalactic magnetic field (IGMF). We search
for delayed GeV emission from the hard-spectrum TeV blazar 1ES 0229+200 with
the goal to detect or constrain the IGMF-dependent secondary flux generated
during the propagation of TeV gamma rays through the intergalactic medium. We
analyze the most recent MAGIC observations over a 5 year time span and
complement them with historic data of the H.E.S.S. and VERITAS telescopes along
with a 12-year long exposure of the Fermi/LAT telescope. We use them to trace
source evolution in the GeV-TeV band over one-and-a-half decade in time. We use
Monte Carlo simulations to predict the delayed secondary gamma-ray flux,
modulated by the source variability, as revealed by TeV-band observations. We
then compare these predictions for various assumed IGMF strengths to all
available measurements of the gamma-ray flux evolution. We find that the source
flux in the energy range above 200 GeV experiences variations around its
average on the 14 years time span of observations. No evidence for the flux
variability is found in 1-100 GeV energy range accessible to Fermi/LAT.
Non-detection of variability due to delayed emission from electromagnetic
cascade developing in the intergalactic medium imposes a lower bound of
B>1.8e-17 G for long correlation length IGMF and B>1e-14 G for an IGMF of the
cosmological origin. Though weaker than the one previously derived from the
analysis of Fermi/LAT data, this bound is more robust, being based on a
conservative intrinsic source spectrum estimate and accounting for the details
of source variability in the TeV energy band. We discuss implications of this
bound for cosmological magnetic fields which might explain the baryon asymmetry
of the Universe.Comment: 10 pages, 5 figures, accepted to A&A. Corresponding authors: Ievgen
Vovk, Paolo Da Vela (mailto:[email protected]) and Andrii Neronov
(mailto:[email protected]
Multimessenger Characterization of Markarian 501 during Historically Low X-Ray and γ-Ray Activity
We study the broadband emission of Mrk 501 using multiwavelength observations from 2017 to 2020 performed with a multitude of instruments, involving, among others, MAGIC, Fermi's Large Area Telescope (LAT), NuSTAR, Swift, GASP-WEBT, and the Owens Valley Radio Observatory. Mrk 501 showed an extremely low broadband activity, which may help to unravel its baseline emission. Nonetheless, significant flux variations are detected at all wave bands, with the highest occurring at X-rays and very-high-energy (VHE) 3-rays. A significant correlation (>3σ) between X-rays and VHE 3-rays is measured, supporting leptonic scenarios to explain the variable parts of the emission, also during low activity. This is further supported when we extend our data from 2008 to 2020, and identify, for the first time, significant correlations between the Swift X-Ray Telescope and Fermi-LAT. We additionally find correlations between high-energy 3-rays and radio, with the radio lagging by more than 100 days, placing the 3-ray emission zone upstream of the radio-bright regions in the jet. Furthermore, Mrk 501 showed a historically low activity in X-rays and VHE 3-rays from mid-2017 to mid-2019 with a stable VHE flux (>0.2 TeV) of 5% the emission of the Crab Nebula. The broadband spectral energy distribution (SED) of this 2 yr long low state, the potential baseline emission of Mrk 501, can be characterized with one-zone leptonic models, and with (lepto)-hadronic models fulfilling neutrino flux constraints from IceCube. We explore the time evolution of the SED toward the low state, revealing that the stable baseline emission may be ascribed to a standing shock, and the variable emission to an additional expanding or traveling shock. © 2023. The Author(s). Published by the American Astronomical Society
First detection of VHE gamma-ray emission from TXS 1515-273, study of its X-ray variability and spectral energy distribution
We report here on the first multi-wavelength (MWL) campaign on the blazar TXS
1515-273, undertaken in 2019 and extending from radio to very-high-energy gamma
rays (VHE). Up until now, this blazar had not been the subject of any detailed
MWL observations. It has a rather hard photon index at GeV energies and was
considered a candidate extreme high-synchrotronpeaked source. MAGIC
observations resulted in the first-time detection of the source in VHE with a
statistical significance of 7.6. The average integral VHE flux of the
source is 6 1% of the Crab nebula flux above 400 GeV. X-ray coverage was
provided by Swift-XRT, XMMNewton, and NuSTAR. The long continuous X-ray
observations were separated by 9 h, both showing clear hour scale
flares. In the XMM-Newton data, both the rise and decay timescales are longer
in the soft X-ray than in the hard X-ray band, indicating the presence of a
particle cooling regime. The X-ray variability timescales were used to
constrain the size of the emission region and the strength of the magnetic
field. The data allowed us to determine the synchrotron peak frequency and
classify the source as a flaring high, but not extreme, synchrotron peaked
object. Considering the constraints and variability patterns from the X-ray
data, we model the broad-band spectral energy distribution. We applied a simple
one-zone model, which could not reproduce the radio emission and the shape of
the optical emission, and a two-component leptonic model with two interacting
components, enabling us to reproduce the emission from radio to VHE band
Study of the GeV to TeV morphology of the γ Cygni SNR (G 78.2+2.1) with MAGIC and Fermi-LAT: Evidence for cosmic ray escape
Context. Diffusive shock acceleration (DSA) is the most promising mechanism that accelerates Galactic cosmic rays (CRs) in the shocks of supernova remnants (SNRs). It is based on particles scattering caused by turbulence ahead and behind the shock. The turbulence upstream is supposedly generated by the CRs, but this process is not well understood. The dominant mechanism may depend on the evolutionary state of the shock and can be studied via the CRs escaping upstream into the interstellar medium (ISM). Aims. Previous observations of the γ Cygni SNR showed a difference in morphology between GeV and TeV energies. Since this SNR has the right age and is at the evolutionary stage for a significant fraction of CRs to escape, our aim is to understand γ-ray emission in the vicinity of the γ Cygni SNR. Methods. We observed the region of the γ Cygni SNR with the MAGIC Imaging Atmospheric Cherenkov telescopes between 2015 May and 2017 September recording 87 h of good-quality data. Additionally, we analysed Fermi-LAT data to study the energy dependence of the morphology as well as the energy spectrum in the GeV to TeV range. The energy spectra and morphology were compared against theoretical predictions, which include a detailed derivation of the CR escape process and their γ-ray generation. Results. The MAGIC and Fermi-LAT data allowed us to identify three emission regions that can be associated with the SNR and that dominate at different energies. Our hadronic emission model accounts well for the morphology and energy spectrum of all source components. It constrains the time-dependence of the maximum energy of the CRs at the shock, the time-dependence of the level of turbulence, and the diffusion coefficient immediately outside the SNR shock. While in agreement with the standard picture of DSA, the time-dependence of the maximum energy was found to be steeper than predicted, and the level of turbulence was found to change over the lifetime of the SNR. © 2023 EDP Sciences. All rights reserved
- …