305 research outputs found

    Monitoring the degree of implementation of an integrated delivery system

    Get PDF
    INTRODUCTION: The aim of the study was to develop a method to measure the implementation of specific components of an Integrated Service Delivery system for the frail elderly. The system includes six mechanisms and tools: (1) coordination of all organizations involved in delivering health and social services, (2) a single entry point, (3) case management, (4) a single assessment tool with a case-mix classification system, (5) an individualized service plan, and (6) a computerized clinical chart. METHOD: Focus groups of researchers, clinicians, managers and policy-makers identified quantitative indicators for each component. The six components were weighted according to their relative importance in order to generate a total score. Data were collected every six months over 30 months to establish the implementation degree in the three experimental areas: Sherbrooke, Granit and Coaticook in the Province of Quebec, Canada. RESULTS: After 30 months, coordination is the most developed component in the three experimental areas. Overall, in July 2003, the Integrated Service Delivery system was implemented at the rate of 73%, 71% and 70% in Sherbrooke, Granit and Coaticook, respectively. DISCUSSION: This type of quantitative assessment provides data for managers and researchers to monitor the implementation. Moreover, when there is an outcome study, the results of the outcome study can be correlated with the degree of implementation, thus allowing for dose-response analyzes and helping to decrease the “black box” effect

    Management of water extracted from carbon sequestration projects

    Full text link
    Throughout the past decade, frequent discussions and debates have centered on the geological sequestration of carbon dioxide (CO{sub 2}). For sequestration to have a reasonably positive impact on atmospheric carbon levels, the anticipated volume of CO{sub 2} that would need to be injected is very large (many millions of tons per year). Many stakeholders have expressed concern about elevated formation pressure following the extended injection of CO{sub 2}. The injected CO{sub 2} plume could potentially extend for many kilometers from the injection well. If not properly managed and monitored, the increased formation pressure could stimulate new fractures or enlarge existing natural cracks or faults, so the CO{sub 2} or the brine pushed ahead of the plume could migrate vertically. One possible tool for management of formation pressure would be to extract water already residing in the formation where CO{sub 2} is being stored. The concept is that by removing water from the receiving formations (referred to as 'extracted water' to distinguish it from 'oil and gas produced water'), the pressure gradients caused by injection could be reduced, and additional pore space could be freed up to sequester CO{sub 2}. Such water extraction would occur away from the CO{sub 2} plume to avoid extracting a portion of the sequestered CO{sub 2} along with the formation water. While water extraction would not be a mandatory component of large-scale carbon storage programs, it could provide many benefits, such as reduction of pressure, increased space for CO{sub 2} storage, and potentially, 'plume steering.' Argonne National Laboratory is developing information for the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) to evaluate management of extracted water. If water is extracted from geological formations designated to receive injected CO{sub 2} for sequestration, the project operator will need to identify methods for managing very large volumes of water most of which will contain large quantities of salt and other dissolved minerals. Produced water from oil and gas production also typically contains large quantities of dissolved solids. Therefore, many of the same practices that are established and used for managing produced water also may be applicable for extracted water. This report describes the probable composition of the extracted water that is removed from the formations, options for managing the extracted water, the pros and cons of those options, and some opportunities for beneficial use of the water. Following the introductory material in Chapter 1, the report is divided into chapters covering the following topics: (Chapter 2) examines the formations that are likely candidates for CO{sub 2} sequestration and provides a general evaluation of the geochemical characteristics of the formations; (Chapter 3) makes some preliminary estimates of the volume of water that could be extracted; (Chapter 4) provides a qualitative review of many potential technologies and practices for managing extracted water and for each technology or management practice, pros and cons are provided; (Chapter 5) explores the potential costs of water management; and (Chapter 6) presents the conclusions

    A Holistic Look at Minimizing Adverse Environmental Impact Under Section 316(b) of the Clean Water Act

    Get PDF
    Section 316(b) of the Clean Water Act (CWA) requires that “the location, design, construction, and capacity of cooling water intake structures reflect the best technology available for minimizing adverse environmental impact.” As the U.S. Environmental Protection Agency (EPA) develops new regulations to implement Section 316(b), much of the debate has centered on adverse impingement and entrainment impacts of cooling-water intake structures. Depending on the specific location and intake layout, once-through cooling systems withdrawing many millions of gallons of water per day can, to a varying degree, harm fish and other aquatic organisms in the water bodies from which the cooling water is withdrawn. Therefore, opponents of once-through cooling systems have encouraged the EPA to require wet or dry cooling tower systems as the best technology available (BTA), without considering site-specific conditions

    Public Perception of Desalinated Produced Water From Oil and Gas Field Operations: A Replication

    Get PDF
    This study is a replication of Theodori et al.’s (2009) research on public perception of desalinated produced water from oil and gas field operations. The data used in this paper were collected in twelve Texas counties. Overall, the findings of this investigation paralleled those uncovered in Theodori et al.’s original exploration. Our data reveal that small percentages of respondents are extremely familiar with the process of desalination and extremely confident that desalinated water could meet human drinking water quality and purity standards. Our data also indicate that respondents are more favorably disposed toward the use of desalinated water for purposes where the probability of human or animal ingestion is lessened. Lastly, our data show that individuals with higher levels of familiarity with the process of desalination were more likely than those with lower levels of familiarity to agree that desalinated water from oil and gas field operations could safely be used for each of nine proposed purposes. Possible implications of these findings are advanced

    Mathematical modeling and simulation of thyroid homeostasis: Implications for the Allan-Herndon-Dudley syndrome

    Get PDF
    Introduction: A mathematical model of the pituitary-thyroid feedback loop is extended to deepen the understanding of the Allan-Herndon-Dudley syndrome (AHDS). The AHDS is characterized by unusual thyroid hormone concentrations and a mutation in the SLC16A2 gene encoding for the monocarboxylate transporter 8 (MCT8). This mutation leads to a loss of thyroid hormone transport activity. One hypothesis to explain the unusual hormone concentrations of AHDS patients is that due to the loss of thyroid hormone transport activity, thyroxine (T4) is partially retained in thyroid cells. Methods: This hypothesis is investigated by extending a mathematical model of the pituitary-thyroid feedback loop to include a model of the net effects of membrane transporters such that the thyroid hormone transport activity can be considered. A nonlinear modeling approach based on the Michaelis-Menten kinetics and its linear approximation are employed to consider the membrane transporters. The unknown parameters are estimated through a constrained parameter optimization. Results: In dynamic simulations, damaged membrane transporters result in a retention of T4 in thyroid cells and ultimately in the unusual hormone concentrations of AHDS patients. The Michaelis-Menten modeling approach and its linear approximation lead to similar results. Discussion: The results support the hypothesis that a partial retention of T4 in thyroid cells represents one mechanism responsible for the unusual hormone concentrations of AHDS patients. Moreover, our results suggest that the retention of T4 in thyroid cells could be the main reason for the unusual hormone concentrations of AHDS patients
    • …
    corecore