9 research outputs found

    Extraction, characterization and biological studies of phytochemicals from Mammea suriga

    Get PDF
    The present work involves extraction of phytochemicals from the root bark of a well-known Indian traditional medicinal plant, viz. Mammea suriga, with various solvents and evaluation of their in vitro antimicrobial and antioxidant activities using standard methods. The phytochemical analysis indicates the presence of some interesting secondary metabolites like flavonoids, cardiac glycosides, alkaloids, saponins and tannins in the extracts. Also, the solvent extracts displayed promising antimicrobial activity against Staphylococcus aureus, Bacillus subtilis and Cryptococcus neoformans with inhibition zone in a range of 20â33 mm. Further, results of their antioxidant screening revealed that aqueous extract (with IC50 values of 111.51±1.03 and 31.05±0.92 μg/mL in total reducing power assay and DPHH radical scavenging assay, respectively) and ethanolic extract (with IC50 values of 128.00±1.01 and 33.25±0.89 μg/mL in total reducing power assay and DPHH radical scavenging assay, respectively) were better antioxidants than standard ascorbic acid. Interestingly, FT-IR analysis of each extract established the presence of various biologically active functional groups in it. Keywords: Mammea suriga, Phytochemical analysis, Antimicrobial activity, Antioxidant assay, FT-IR analysi

    Evaluation of Calcium Fluoroaluminosilicate Based Glass Ionomer Luting Cements Processed Both by Conventional and Microwave Assisted Methods

    No full text
    Calcium fluoroaluminosilicate glasses (CAS) are used in the formulation of glass ionomer cements for dental applications. However, the cements obtained from CAS glasses were found to be radiolucent. In this study, the influence of substituting Zn, Sr and Mg for Ca of CAS glasses was investigated with respect to the structure and setting characteristics, mechanical properties, and radiopacity of cements designed for luting applications. Three glass compositions based on substitution of Zn, Sr and Mg for Ca at 1:1 molar ratio was synthesized. They were coded as the G 021 (Ca: Zn), G 022 (Ca: Sr), G 023 (Ca: Mg). G 021 and G 022 glasses were processed by conventional melt quench route, whereas G 023 was processed by microwave melt–quench route. Each glass was then mixed with Fuji Type I GIC liquid in order to evaluate the properties of novel cements at different powder/liquid ratios. X-ray diffraction and Fourier Transform-Infrared spectroscopy analysis confirmed the structure of the processed glasses. The average particle size of the processed glass powders was within specification limits for luting applications (<15 μm). The substitution of Zn, Sr and Mg for Ca at 1:1 molar ratio increased the reactivity of the respective glasses. This has been reflected in their respective setting characteristics and mechanical properties. The optimal combination of setting time, strength and radiopacity for the cements examined here was shown by G 022 cements. The microwave melting can be utilized for processing ionomer glasses as it did not alter the structure and properties of G 023 cement
    corecore