48 research outputs found
Spin dynamics of strongly-doped La_{1-x}Sr_xMnO_3
Cold neutron triple-axis measurements have been used to investigate the
nature of the long-wavelength spin dynamics in strongly-doped
LaSrMnO single crystals with =0.2 and 0.3. Both systems
behave like isotropic ferromagnets at low T, with a gapless ( meV)
quadratic dispersion relation . The values of the spin-wave
stiffness constant are large ( = 166.77 meV for =0.2
and D = 175.87 meV for =0.3), which directly shows that the
electron transfer energy for the band is large. exhibits a power law
behavior as a function of temperature, and appears to collapse as T -> T_C.
Nevertheless, an anomalously strong quasielastic central component develops and
dominates the fluctuation spectrum as T -> T_C. Bragg scattering indicates that
the magnetization near exhibits power law behavior, with for both systems, as expected for a three-dimensional ferromagnet.Comment: 4 pages (RevTex), 3 figures (encapsulated postscript
Structure and Spin Dynamics of LaSrMnO
Neutron scattering has been used to study the structure and spin dynamics of
LaSrMnO. The magnetic structure of this system is
ferromagnetic below T_C = 235 K. We see anomalies in the Bragg peak intensities
and new superlattice peaks consistent with the onset of a spin-canted phase
below T_{CA} = 205 K, which appears to be associated with a gap at q = (0, 0,
0.5) in the spin-wave spectrum. Anomalies in the lattice parameters indicate a
concomitant lattice distortion. The long-wavelength magnetic excitations are
found to be conventional spin waves, with a gapless (< 0.02 meV) isotropic
dispersion relation . The spin stiffness constant D has a
dependence at low T, and the damping at small q follows . An
anomalously strong quasielastic component, however, develops at small wave
vector above 200 K and dominates the fluctuation spectrum as T -> T_C. At
larger q, on the other hand, the magnetic excitations become heavily damped at
low temperatures, indicating that spin waves in this regime are not eigenstates
of the system, while raising the temperature dramatically increases the
damping. The strength of the spin-wave damping also depends strongly on the
symmetry direction in the crystal. These anomalous damping effects are likely
due to the itinerant character of the electrons.Comment: 8 pages (RevTex), 9 figures (encapsulated postscript
The Structure of Nanoscale Polaron Correlations in La1.2Sr1.8Mn2O7
A system of strongly-interacting electron-lattice polarons can exhibit charge
and orbital order at sufficiently high polaron concentrations. In this study,
the structure of short-range polaron correlations in the layered colossal
magnetoresistive perovskite manganite, La1.2Sr1.8Mn2O7, has been determined by
a crystallographic analysis of broad satellite maxima observed in diffuse X-ray
and neutron scattering data. The resulting q=(0.3,0,1) modulation is a
longitudinal octahedral-stretch mode, consistent with an incommensurate
Jahn-Teller-coupled charge-density-wave fluctuations, that implies an unusual
orbital-stripe pattern parallel to the directions.Comment: Reformatted with RevTe
Magnon Broadening Effect by Magnon-Phonon Interaction in Colossal Magnetoresistance Manganites
In order to study the magnetic excitation behaviors in colossal
magnetoresistance manganites, a magnon-phonon interacting system is
investigated. Sudden broadening of magnon linewidth is obtained when a magnon
branch crosses over an optical phonon branch. Onset of the broadening is
approximately determined by the magnon density of states. Anomalous magnon
damping at the brillouine zone boundary observed in low Curie temperature
manganites is explained.Comment: 4 pages incl. 4 figs. New e-mail: [email protected]
Novel stripe-type charge ordering in the metallic A-type antiferromagnet Pr{0.5}Sr{0.5}MnO{3}
We demonstrate that an A-type antiferromagnetic (AFM) state of
Pr{0.5}Sr{0.5}MnO{3} exhibits a novel charge ordering which governs the
transport property. This charge ordering is stripe-like, being characterized by
a wave vector q ~ (0,0,0.3) with very anisotropic correlation parallel and
perpendicular to the stripe direction. This charge ordering is specific to the
manganites with relatively wide one-electron band width (W) which often exhibit
a metallic A-type AFM state, and should be strictly distinguished from the
CE-type checkerboard-like charge ordering which is commonly observed in
manganites with narrower W such as La{1-x}Ca{x}MnO{3} and Pr{1-x}Ca{x}MnO{3}.Comment: REVTeX4, 5 pages, 4 figure
Stripes Induced by Orbital Ordering in Layered Manganites
Spin-charge-orbital ordered structures in doped layered manganites are
investigated using an orbital-degenerate double-exchange model tightly coupled
to Jahn-Teller distortions. In the ferromagnetic phase, unexpected diagonal
stripes at = (=integer) are observed, as in recent experiments.
These stripes are induced by the orbital degree of freedom, which forms a
staggered pattern in the background. A -shift in the orbital order across
stripes is identified, analogous to the -shift in spin order across
stripes in cuprates. At =1/4 and 1/3, another non-magnetic phase with
diagonal static charge stripes is stabilized at intermediate values of the
-spins exchange coupling.Comment: reordering of figure
Optical Studies of a Layered Manganite La_{1.2}Sr_{1.8}Mn_2O_7 : Polaron Correlation Effect
Optical conductivity spectra of a cleaved ab-plane of a
La_{1.2}Sr_{1.8}Mn_2O_7 single crystal exhibit a small polaron absorption band
in the mid-infrared region at overall temperatures. With decreasing temperature
(T) to Curie temperature (T_C), the center frequency of the small polaron band
moves to a higher frequency, resulting in a gap-like feature, and that it
collapses to a lower frequency below T_C. Interestingly, with decreasing T, the
stretching phonon mode hardens above T_C and softens below T_C. These
concurring changes of lattice and electronic structure indicate that short
range polaron correlation exist above T_C but disappear with a magnetic
ordering.Comment: 4 pages including 5 figures. submitted to Phys. Rev.
Critical Temperature of Ferromagnetic Transition in Three-Dimensional Double-Exchange Models
Ferromagnetic transition in three-dimensional double-exchange models is
studied by the Monte Carlo method. Critical temperature is
precisely determined by finite-size scaling analysis. Strong spin fluctuations
in this itinerant system significantly reduce from mean-field
estimates. By choosing appropriate parameters, obtained values of
quantitatively agree with experiments for the ferromagnetic metal regime of
(La,Sr)MnO, which is a typical perovskite manganite showing colossal
magnetoresistance. This indicates that the double-exchange mechanism alone is
sufficient to explain in this material. Critical exponents are also
discussed.Comment: 4 pages including 1 table and 4 figures, to be published in J. Phys.
Soc. Jp
Band structure of the Jahn-Teller polaron from Quantum Monte Carlo
A path-integral representation is constructed for the Jahn-Teller polaron
(JTP). It leads to a perturbation series that can be summed exactly by the
diagrammatic Quantum Monte Carlo technique. The ground-state energy, effective
mass, spectrum and density of states of the three-dimensional JTP are
calculated with no systematic errors. The band structure of JTP interacting
with dispersionless phonons, is found to be similar to that of the Holstein
polaron. The mass of JTP increases exponentially with the coupling constant. At
small phonon frequencies, the spectrum of JTP is flat at large momenta, which
leads to a strongly distorted density of states with a massive peak at the top
of the band.Comment: 5 pages of REVTeX, 3 figure
Spin Dynamics of the Magnetoresistive Pyrochlore Tl_2Mn_2O_7
Neutron scattering has been used to study the magnetic order and spin
dynamics of the colossal magnetoresistive pyrochlore Tl_2Mn_2O_7. On cooling
from the paramagnetic state, magnetic correlations develop and appear to
diverge at T_C (123 K). In the ferromagnetic phase well defined spin waves are
observed, with a gapless ( meV) dispersion relation E=Dq^{2} as
expected for an ideal isotropic ferromagnet. As T approaches T_C from low T,
the spin waves renormalize, but no significant central diffusive component to
the fluctuation spectrum is observed in stark contrast to the
La(Ca,Ba,Sr)MnO system. These results argue strongly that the
mechanism responsible for the magnetoresistive effect has a different origin in
these two classes of materials.Comment: 4 pages (RevTex), 4 figures (encapsulated postscript), to be
published in Phys. Rev. Let