586 research outputs found

    Competing ideologies of Russia's civil society

    Get PDF
    Many analysts and public opinion makers in the West conflate the notions of Russia’s non-systemic liberal opposition and the country’s civil society. Indeed, despite garnering the support of a minority of Russia’s population, non-systemic liberal opposition represents a well-organized civic group with a clearly articulated agenda and the ability to take action. Yet, does Russia’s civil society end there? A closer look at the country’s politics shows that Russia has a substantial conservative-traditionalist faction that has also developed agenda for action and formulated opinions. This group is anti-liberal rather than illiberal ideologically and pro-strong state/pro a geopolitically independent Russia rather than pro-Kremlin politically. The interaction between liberal and conservative civic groups represents the battle of meanings, ideas, and ethics, and ultimately determines the future trajectory of Russia’s evolution. Thus, the analysis of Russia’s civil society must represent a rather more nuanced picture than a mere study of the liberal non-systemic opposition. This article will examine the complexity of Russia’s civil society scene with reference to the interplay between the liberal opposition and conservative majority factions. The paper will argue that such complexity stems from ideological value pluralism that falls far beyond the boundaries of the liberal consensus, often skewing our understanding of political practice in Russia

    De Sitter stability in quadratic gravity

    Full text link
    Quadratic curvature corrections to Einstein-Hilbert action lead in general to higher-order equations of motion, which can induced instability of some unperturbed solutions of General Relativity. We study conditions for stability of de Sitter cosmological solution. We argue that simple form of this condition known for FRW background in 3+1 dimensions changes seriously if at least one of these two assumptions is violated. In the present paper the stability conditions for de Sitter solution have been found for multidimensional FRW background and for Bianchi I metrics in 3+1 dimensions.Comment: 12 pages with 4 figures; references adde

    On the Definition of Effective Permittivity and Permeability For Thin Composite Layers

    Get PDF
    The problem of definition of effective material parameters (permittivity and permeability) for composite layers containing only one-two parallel arrays of complex-shaped inclusions is discussed. Such structures are of high importance for the design of novel metamaterials, where the realizable layers quite often have only one or two layers of particles across the sample thickness. Effective parameters which describe the averaged induced polarizations are introduced. As an explicit example, we develop an analytical model suitable for calculation of the effective material parameters ϵeff\epsilon_{\rm{eff}} and μeff\mu_{\rm{eff}} for double arrays of electrically small electrically polarizable scatterers. Electric and magnetic dipole moments induced in the structure and the corresponding reflection and transmission coefficients are calculated using the local field approach for the normal plane-wave incidence, and effective parameters are introduced through the averaged fields and polarizations. In the absence of losses both material parameters are purely real and satisfy the Kramers-Kronig relations and the second law of thermodynamics. We compare the analytical results to the simulated and experimental results available in the literature. The physical meaning of the introduced parameters is discussed in detail.Comment: 6 pages, 5 figure

    Homogenization of metasurfaces formed by random resonant particles in periodical lattices

    Get PDF
    In this paper we suggest a simple analytical method for description of electromagnetic properties of a geometrically regular two-dimensional subwavelength arrays (metasurfaces) formed by particles with randomly fluctuating polarizabilities. Such metasurfaces are of topical importance due to development of mass-scale bottom-up fabrication methods, for which fluctuations of the particles sizes, shapes, and/or composition are inevitable. Understanding and prediction of electromagnetic properties of such random metasurfaces is a challenge. We propose an analytical homogenization method applicable for normal wave incidence on particles arrays with dominating electric dipole responses and validate it with numerical point-dipole modeling using the supercell approach. We demonstrate that fluctuations of particles polarizabilities lead to increased diffuse scattering despite the subwavelength lattice constant of the array. The proposed method can be readily extended to oblique incidence and particles with both electric and magnetic dipole resonances.Comment: 10 pages, 5 figure

    Broadband reflectionless metasheets: Frequency-selective transmission and perfect absorption

    Full text link
    Energy of propagating electromagnetic waves can be fully absorbed in a thin lossy layer, but only in a narrow frequency band, as follows from the causality principle. On the other hand, it appears that there are no fundamental limitations on broadband matching of thin absorbing layers. However, known thin absorbers produce significant reflections outside of the resonant absorption band. In this paper we explore possibilities to realize a thin absorbing layer which produces no reflected waves in a very wide frequency range, while the transmission coefficient has a narrow peak of full absorption. Here we show, both theoretically and experimentally, that a wide-band-matched thin resonant absorber, invisible in reflection, can be realized if one and the same resonant mode of the absorbing array unit cells is utilized to create both electric and magnetic responses. We test this concept using chiral particles in each unit cells, arranged in a periodic planar racemic array, utilizing chirality coupling in each unit cell but compensating the field coupling at the macroscopic level. We prove that the concept and the proposed realization approach also can be used to create non-reflecting layers for full control of transmitted fields. Our results can have a broad range of potential applications over the entire electromagnetic spectrum including, for example, perfect ultra-compact wave filters and selective multi-frequency sensors.Comment: 9 pages, 10 figure

    Sub-wavelength imaging: Resolution enhancement using metal wire gratings

    Full text link
    An experimental evidence of subwavelength imaging with a "lens", which is a uniaxial negative permittivity wire medium slab, is reported. The slab is formed by gratings of long thin parallel conducting cylinders. Taking into account the anisotropy and spatial dispersion in the wire medium we theoretically show that there are no usual plasmons that could be exited on surfaces of such a slab, and there is no resonant enhancement of evanescent fields in the slab. The experimentally observed clear improvement of the resolution in the presence of the slab is explained as filtering out the harmonics with small wavenumbers. In other words, the wire gratings (the wire medium) suppress strong traveling-mode components increasing the role of evanescent waves in the image formation. This effect can be used in near-field imaging and detection applications.Comment: 12 pages, 6 figure
    corecore