4 research outputs found

    Graphene superlattice with periodically modulated Dirac gap

    Full text link
    Graphene-based superlattice (SL) formed by a periodic gap modulation is studied theoretically using a Dirac-type Hamiltonian. Analyzing the dispersion relation we have found that new Dirac points arise in the electronic spectrum under certain conditions. As a result, the gap between conduction and valence minibands disappears. The expressions for the position of these Dirac points in k{\bf k}-space and threshold value of the potential for their emergence were obtained. At some parameters of the system, we have revealed interface states which form the top of the valence miniband.Comment: 5 pages, 4 figures, accepted to Physical Review

    The long-term cyclotron dynamics of relativistic wave packets: spontaneous collapse and revival

    Full text link
    In this work we study the effects of collapse and revival as well as {\it Zitterbewegung} (ZB) phenomenon, for the relativistic electron wave packets, which are a superposition of the states with quantum numbers sharply peaked around some level n0n_0 of the order of few tens. The probability densities as well as average velocities of the packet center and the average spin components were calculated analytically and visualized. Our computations demonstrate that due to dephasing of the states for times larger than the cyclotron period the initial wave packet (which includes the states with the positive energy only) loses the spatial localization so that the evolution can no longer be described classically. However, at the half-revival time t=TR/2t=T_R/2 its reshaping takes place firstly. The behavior of the wave packet containing the states of both energy bands (with En>0E_n>0 and En<0E_n<0) is more complicated. At short times of a few classical periods such packet splits into two parts which rotate with cyclotron frequency in the opposite directions and meet each other every one-half of the cyclotron period. At these moments their wave functions have significant overlap that leads to ZB. At the time of fractional revival each of two sub-packets is decomposed into few packets-fractions. However, at t=TRt=T_R each of the two sub-packets (with positive or negative energy) restores at various points of the cyclotron orbit, that makes it impossible reshaping of initial wave packet entirely unlike the wave packet which consists of states with energies En>0E_n>0 only. Obtained results can be useful for the description of electromagnetic radiation and absorption in relativistic plasma on astrophysics objects, where super high magnetic field has the value of the order 108−10910^8-10^9T, as well as for interpretation of experiments with trapped ions
    corecore