55 research outputs found

    Macroscopic Noisy Bounded Confidence Models with Distributed Radical Opinions

    Get PDF
    In this article, we study the nonlinear Fokker-Planck (FP) equation that arises as a mean-field (macroscopic) approximation of bounded confidence opinion dynamics, where opinions are influenced by environmental noises and opinions of radicals (stubborn individuals). The distribution of radical opinions serves as an infinite-dimensional exogenous input to the FP equation, visibly influencing the steady opinion profile. We establish mathematical properties of the FP equation. In particular, we (i) show the well-posedness of the dynamic equation, (ii) provide existence result accompanied by a quantitative global estimate for the corresponding stationary solution, and (iii) establish an explicit lower bound on the noise level that guarantees exponential convergence of the dynamics to stationary state. Combining the results in (ii) and (iii) readily yields the input-output stability of the system for sufficiently large noises. Next, using Fourier analysis, the structure of opinion clusters under the uniform initial distribution is examined. Specifically, two numerical schemes for identification of order-disorder transition and characterization of initial clustering behavior are provided. The results of analysis are validated through several numerical simulations of the continuum-agent model (partial differential equation) and the corresponding discrete-agent model (interacting stochastic differential equations) for a particular distribution of radicals

    Optimal Universal Controllers for Roll Stabilization

    Get PDF
    Roll stabilization is an important problem of ship motion control. This problem becomes especially difficult if the same set of actuators (e.g. a single rudder) has to be used for roll stabilization and heading control of the vessel, so that the roll stabilizing system interferes with the ship autopilot. Finding the "trade-off" between the concurrent goals of accurate vessel steering and roll stabilization usually reduces to an optimization problem, which has to be solved in presence of an unknown wave disturbance. Standard approaches to this problem (loop-shaping, LQG, H∞H_{\infty}-control etc.) require to know the spectral density of the disturbance, considered to be a \colored noise". In this paper, we propose a novel approach to optimal roll stabilization, approximating the disturbance by a polyharmonic signal with known frequencies yet uncertain amplitudes and phase shifts. Linear quadratic optimization problems in presence of polyharmonic disturbances can be solved by means of the theory of universal controllers developed by V.A. Yakubovich. An optimal universal controller delivers the optimal solution for any uncertain amplitudes and phases. Using Marine Systems Simulator (MSS) Toolbox that provides a realistic vessel's model, we compare our design method with classical approaches to optimal roll stabilization. Among three controllers providing the same quality of yaw steering, OUC stabilizes the roll motion most efficiently

    Structural Balance via Gradient Flows over Signed Graphs

    Get PDF
    Structural balance is a classic property of signed graphs satisfying Heider's seminal axioms. Mathematical sociologists have studied balance theory since its inception in the 1940s. Recent research has focused on the development of dynamic models explaining the emergence of structural balance. In this paper, we introduce a novel class of parsimonious dynamic models for structural balance based on an interpersonal influence process. Our proposed models are gradient flows of an energy function, called the dissonance function, which captures the cognitive dissonance arising from violations of Heider's axioms. Thus, we build a new connection with the literature on energy landscape minimization. This gradient flow characterization allows us to study the transient and asymptotic behaviors of our model. We provide mathematical and numerical results describing the critical points of the dissonance function

    Robust Output Regulation: Optimization-Based Synthesis and Event-Triggered Implementation

    Get PDF
    We investigate the problem of practical output regulation: Design a controller that brings the system output in the vicinity of a desired target value while keeping the other variables bounded. We consider uncertain systems that are possibly nonlinear and the uncertainty of the linear part is modeled element-wise through a parametric family of matrix boxes. An optimization-based design procedures is proposed that delivers a continuous-time control and estimates the maximal regulation error. We also analyze an event-triggered emulation of this controller, which can be implemented on a digital platform, along with an explicit estimates of the regulation error

    Problem of uniform deployment on a line segment for second-order agents

    Get PDF
    Consideration was given to a special problem of controlling a formation of mobile agents, that of uniform deployment of several identical agents on a segment of the straight line. For the case of agents obeying the first-order dynamic model, this problem seems to be first formulated in 1997 by I.A. Wagner and A.M. Bruckstein as "row straightening." In the present paper, the straightening algorithm was generalized to a more interesting case where the agent dynamics obeys second-order differential equations or, stated differently, it is the agent's acceleration (or the force applied to it) that is the control

    Fast Simulation of Analog Circuit Blocks under Nonstationary Operating Conditions

    Get PDF
    This paper proposes a black-box behavioral modeling framework for analog circuit blocks operating under small-signal conditions around non-stationary operating points. Such variations may be induced either by changes in the loading conditions or by event-driven updates of the operating point for system performance optimization, e.g., to reduce power consumption. An extension of existing data-driven parameterized reduced-order modeling techniques is proposed that considers the time-varying bias components of the port signals as non-stationary parameters. These components are extracted at runtime by a lowpass filter and used to instantaneously update the matrices of the reduced-order state-space model realized as a SPICE netlist. Our main result is a formal proof of quadratic stability of such Linear Parameter Varying (LPV) models, enabled by imposing a specific model structure and representing the transfer function in a basis of positive functions whose elements constitute a partition of unity. The proposed quadratic stability conditions are easily enforced through a finite set of small-size Linear Matrix Inequalities (LMI), used as constraints during model construction. Numerical results on various circuit blocks including voltage regulators confirm that our approach not only ensures the model stability, but also provides speedup in runtime up to 2 orders of magnitude with respect to full transistor-level circuits

    Average consensus in symmetric nonlinearly coupled delayed networks

    No full text
    The paper addresses consensus under nonlinear couplings and bounded delays for multi-agent systems, where the agents have the single-integrator dynamics. The network topology is undirected and may alter as time progresses. The couplings are uncertain and satisfy a conventional sector condition with known sector slopes. The delays are uncertain, time-varying and obey known upper bounds. The network satisfies a symmetry condition that resembles the Newton's Third Law. Explicit analytical conditions for the robust consensus are offered that employ only the known upper bounds for the delays and the sector slopes

    Average consensus in symmetric nonlinearly coupled delayed networks

    No full text

    Average consensus in symmetric nonlinearly coupled delayed networks

    No full text
    The paper addresses consensus under nonlinear couplings and bounded delays for multi-agent systems, where the agents have the single-integrator dynamics. The network topology is undirected and may alter as time progresses. The couplings are uncertain and satisfy a conventional sector condition with known sector slopes. The delays are uncertain, time-varying and obey known upper bounds. The network satisfies a symmetry condition that resembles the Newton's Third Law. Explicit analytical conditions for the robust consensus are offered that employ only the known upper bounds for the delays and the sector slopes
    • …
    corecore