161 research outputs found
Mathematical Simulation of Contaminant Flow in Closed Reservoir
A mathematical model of the propagation in flooded mine lightweight contaminant due to allocation of groundwater is considered. Mathematical model was based on an analysis of experimental data and using concept and methods from reactive media mechanics. The boundary-value problem is solved numerically using the finite volume method. The distribution of fields of velocities and concentration of impurity particles in a flooded mine have been obtained at different times. These results can be used to analyze mining water treatment process due to environment and evaluate its further possible improvements
Scattering of evanescent wave by two cylinders near a flat boundary
Two-dimensional problem of evanescent wave scattering by dielectric or
metallic cylinders near the interface between two dielectric media is solved
numerically by boundary integral equations method. A special Green function was
proposed to avoid the infinite integration. A pattern with a circular and a
prolate elliptic cylinders, respectively, is suggested to simulate the sample
and the probe in near-field optical microscopy. The energy flux in the midplane
of the probe-cylinder is calculated as a function of its position.Comment: 10 pages, 4 figure
On the research of the methodology of mathematization of pedagogical science
Topicality of the study is driven by the fact that the new fundamental mathematical ideas and methods of mathematics arise in the new era of mathematization of science and have a great influence on the formation of methodological culture of educational research in recent decades. The aim of the article is to identify the important aspects of the methodology of mathematization of pedagogical science. The leading approach to the study of this problem is a philosophical and mathematical analysis of aspects of the methodology of mathematization of pedagogical science that allows to consider in complex the aspects revealing in the light of matematization of sciences. The analysis of the specified aspects describes the main features of a methodological interaction between mathematical and pedagogical science, the influence of the ideas and methods of modern mathematics and mathematical culture on pedagogical research, on the formation of conceptual and terminological bases of correct logic and of the reasoning of pedagogical research. The materials of the article can be used in the correct use of ideas and methods of modern mathematics during the study of the characteristic features of pedagogical objects, processes and phenomena. Β© 2016 Perminov et al
Principles of integrative modelling at studying of plasma and welding processes
The relevance of the problem subject to the research is conditioned by need for introduction of modern technologies into the educational process and insufficient adaptation of the higher school teachers to the applied information and automated procedures in education and science. The purpose of the publication consists in the analysis of automated procedures efficiency in engineering training and development of structurally functional model of information skills for students and teachers during their teaching in welding and allied technologies. The leading approach to research of this problem is the structurally functional method of the objects studying. This method based on representation of technological structure as hierarchical sequence of the interconnected devices and division of a matter into objects and means of influence that allows to allocate the processes providing functioning between means of influence. In the publication the structurally functional models of information skills formation for students and teachers in engineering and natural-science training are presented. The materials of the publication can be useful for students and teachers at studying of welding and allied technologies and development of scientifically-methodical maintenance for engineering and natural-science disciplines. Β© 2016 Anakhov et al
Improvement of firebrand tracking and detection software
Burning and glowing firebrands generated by wildland and urban fires may lead to the initiation of spot fnes and the ignition of structures. One of the ways to obtain this infonnation is to process tliennal video files. Earlier, a number of algorithms were developed for the analysis of the characteristics of fu'ebrands under field conditions. However, they had certain disadvantages. In this regard, this work is devoted to the development of new algorithms and their testing
Modelling Methodology as the Basis for Implementation of an Interdisciplinary Approach in the Training of Students of Pedagogical Specialties
Introduction. Nowadays, according to the tendencies of education modernisation, an interdisciplinary approach is taking a leading role, based on deepening the links between education and science, which is the most acute problem in the conditions of large amounts of scientific information. The implementation of the interdisciplinary approach is based on the methodology of modelling using information technologies, as a methodology of a new post-industrial stage of scientific culture of research in the digital age, which is of fundamental importance in modern teacher training.The aim of the present article is to investigate the aspects of modelling methodology using information technologies in the implementation of an interdisciplinary approach in the training of students of pedagogical specialties.Methodology and research methods. In the course of the research, a modelling methodology, a systematic approach, the analysis and generalisation of the results of academic works on the implementation of interdisciplinary, cultural, and meta-subject approaches in education were employed.Results and scientific novelty. The authors conducted the analysis of interdisciplinary approach (interdisciplinary integration) as a leading trend in post-industrial education. It is justified that interdisciplinary training, implemented on the basis of modelling methodology, is of fundamental importance in the formation of general-cultural scientific ideas among students and in their awareness of science as the ideal scientific knowledge. Various aspects of modernisation of teacher training based of modelling methodology are investigated. The main peculiarities of implementation of cultural and meta-subject approaches in the selection of the content of profile training of future teachers are identified. It is revealed that interdisciplinary courses play an important role in the implementation of the interdisciplinary approach. The didactic and methodological principles for the development of model-theoretical interdisciplinary courses for future teachers are established. It is demonstrated that in accordance with the modelling methodology, the main didactic goal of such courses is to teach the implementation of stages for investigating solutions of research problems (objects of processes or phenomena) using information technologies.Practical significance. The materials of the article contribute to the implementation of the interdisciplinary approach in the content of training of students of pedagogical specialties. Also, the research findings might be useful for both theorists of education and for teachers, who are engaged in professional training of students of pedagogical specialties, and all those who are interested in the further development of educational system.ΠΠ²Π΅Π΄Π΅Π½ΠΈΠ΅. Π ΠΌΠΎΠ΄Π΅ΡΠ½ΠΈΠ·Π°ΡΠΈΠΈ ΡΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ Π²Π΅Π΄ΡΡΡΡ ΡΠΎΠ»Ρ Π½Π°ΡΠΈΠ½Π°Π΅Ρ ΠΈΠ³ΡΠ°ΡΡ ΠΌΠ΅ΠΆΠ΄ΠΈΡΡΠΈΠΏΠ»ΠΈΠ½Π°ΡΠ½ΡΠΉ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄, ΠΎΡΠ½ΠΎΠ²Π°Π½Π½ΡΠΉ Π½Π° ΡΠ³Π»ΡΠ±Π»Π΅Π½ΠΈΠΈ ΡΠ²ΡΠ·Π΅ΠΉ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ Ρ Π½Π°ΡΠΊΠΎΠΉ, ΡΡΠΎ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠ΅Π³ΠΎΠ΄Π½Ρ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΠΎΡΡΡΠΎΠΉ ΠΏΡΠΎΠ±Π»Π΅ΠΌΠΎΠΉ Π² ΡΡΠ»ΠΎΠ²ΠΈΡΡ
Π»Π°Π²ΠΈΠ½ΠΎΠΎΠ±ΡΠ°Π·Π½ΠΎΠ³ΠΎ ΡΠΎΡΡΠ° Π½Π°ΡΡΠ½ΠΎΠΉ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠΈ. Π ΠΎΡΠ½ΠΎΠ²Π΅ ΡΠ΅Π°Π»ΠΈΠ·Π°ΡΠΈΠΈ ΠΌΠ΅ΠΆΠ΄ΠΈΡΡΠΈΠΏΠ»ΠΈΠ½Π°ΡΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄Π° Π»Π΅ΠΆΠΈΡ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ»ΠΎΠ³ΠΈΡ ΠΌΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π½ΠΈΡ Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠΎΠ½Π½ΡΡ
ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΠΉ ΠΊΠ°ΠΊ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ»ΠΎΠ³ΠΈΡ Π½ΠΎΠ²ΠΎΠΉ ΠΏΠΎΡΡΠΈΠ½Π΄ΡΡΡΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΡΡΡΠΏΠ΅Π½ΠΈ Π½Π°ΡΡΠ½ΠΎΠΉ ΠΊΡΠ»ΡΡΡΡΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ Π² ΡΠΈΡΡΠΎΠ²ΡΡ ΡΠΏΠΎΡ
Ρ, ΠΈΠΌΠ΅ΡΡΠ°Ρ ΡΡΠ½Π΄Π°ΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΈ Π² ΠΏΠΎΠ΄Π³ΠΎΡΠΎΠ²ΠΊΠ΅ ΡΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΡΡ
ΠΏΠ΅Π΄Π°Π³ΠΎΠ³ΠΎΠ².Π¦Π΅Π»Ρ ΡΡΠ°ΡΡΠΈ β ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΡ Π°ΡΠΏΠ΅ΠΊΡΡ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΌΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π½ΠΈΡ Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠΎΠ½Π½ΡΡ
ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΠΉ Π² ΡΠ΅Π°Π»ΠΈΠ·Π°ΡΠΈΠΈ ΠΌΠ΅ΠΆΠ΄ΠΈΡΡΠΈΠΏΠ»ΠΈΠ½Π°ΡΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄Π° Π² ΠΏΠΎΠ΄Π³ΠΎΡΠΎΠ²ΠΊΠ΅ ΡΡΡΠ΄Π΅Π½ΡΠΎΠ² ΠΏΠ΅Π΄Π°Π³ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠΉ.ΠΠ΅ΡΠΎΠ΄ΠΎΠ»ΠΎΠ³ΠΈΡ ΠΈ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠΈ. Π ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π»ΠΈΡΡ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ»ΠΎΠ³ΠΈΡ ΠΌΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π½ΠΈΡ, ΡΠΈΡΡΠ΅ΠΌΠ½ΡΠΉ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄, Π°Π½Π°Π»ΠΈΠ· ΠΈ ΠΎΠ±ΠΎΠ±ΡΠ΅Π½ΠΈΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ² ΡΠ°Π±ΠΎΡ ΠΏΠΎ ΡΠ΅Π°Π»ΠΈΠ·Π°ΡΠΈΠΈ ΠΌΠ΅ΠΆΠ΄ΠΈΡΡΠΈΠΏΠ»ΠΈΠ½Π°ΡΠ½ΠΎΠ³ΠΎ, ΠΊΡΠ»ΡΡΡΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΈ ΠΌΠ΅ΡΠ°ΠΏΡΠ΅Π΄ΠΌΠ΅ΡΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄ΠΎΠ² Π² ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠΈ. Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΈ Π½Π°ΡΡΠ½Π°Ρ Π½ΠΎΠ²ΠΈΠ·Π½Π°. ΠΡΠΎΠ²Π΅Π΄Π΅Π½ Π°Π½Π°Π»ΠΈΠ· ΠΌΠ΅ΠΆΠ΄ΠΈΡΡΠΈΠΏΠ»ΠΈΠ½Π°ΡΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄Π°/ΠΈΠ½ΡΠ΅Π³ΡΠ°ΡΠΈΠΈ ΠΊΠ°ΠΊ Π²Π΅Π΄ΡΡΠ΅ΠΉ ΡΠ΅Π½Π΄Π΅Π½ΡΠΈΠΈ Π² ΠΏΠΎΡΡΠΈΠ½Π΄ΡΡΡΡΠΈΠ°Π»ΡΠ½ΠΎΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠΈ. ΠΠ±ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΎ, ΡΡΠΎ ΠΌΠ΅ΠΆΠ΄ΠΈΡΡΠΈΠΏΠ»ΠΈΠ½Π°ΡΠ½ΠΎΡΡΡ ΠΏΠΎΠ΄Π³ΠΎΡΠΎΠ²ΠΊΠΈ, ΡΠ΅Π°Π»ΠΈΠ·ΡΠ΅ΠΌΠ°Ρ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΌΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π½ΠΈΡ, ΠΈΠΌΠ΅Π΅Ρ ΡΡΠ½Π΄Π°ΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π² ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΠΈ Ρ ΡΡΡΠ΄Π΅Π½ΡΠΎΠ² ΠΎΠ±ΡΠ΅ΠΊΡΠ»ΡΡΡΡΠ½ΡΡ
Π½Π°ΡΡΠ½ΡΡ
ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ΠΈΠΉ ΠΈ Π² ΠΎΡΠΎΠ·Π½Π°Π½ΠΈΠΈ ΠΈΠΌΠΈ Π½Π°ΡΠΊΠΈ ΠΊΠ°ΠΊ ΠΈΠ΄Π΅Π°Π»Π° Π΅Π΄ΠΈΠ½ΠΎΠ³ΠΎ Π½Π°ΡΡΠ½ΠΎΠ³ΠΎ Π·Π½Π°Π½ΠΈΡ. ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Ρ ΡΠ°Π·Π»ΠΈΡΠ½ΡΠ΅ Π°ΡΠΏΠ΅ΠΊΡΡ ΠΌΠΎΠ΄Π΅ΡΠ½ΠΈΠ·Π°ΡΠΈΠΈ ΠΏΠΎΠ΄Π³ΠΎΡΠΎΠ²ΠΊΠΈ ΡΡΡΠ΄Π΅Π½ΡΠΎΠ² ΠΏΠ΅Π΄Π°Π³ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠΉ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΌΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π½ΠΈΡ, ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Ρ ΠΎΡΠ½ΠΎΠ²Π½ΡΠ΅ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠΈ ΡΠ΅Π°Π»ΠΈΠ·Π°ΡΠΈΠΈ ΠΊΡΠ»ΡΡΡΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΈ ΠΌΠ΅ΡΠ°ΠΏΡΠ΅Π΄ΠΌΠ΅ΡΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄ΠΎΠ² Π² ΠΎΡΠ±ΠΎΡΠ΅ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΡ ΠΏΡΠΎΡΠΈΠ»ΡΠ½ΠΎΠΉ ΠΏΠΎΠ΄Π³ΠΎΡΠΎΠ²ΠΊΠΈ Π±ΡΠ΄ΡΡΠΈΡ
ΠΏΠ΅Π΄Π°Π³ΠΎΠ³ΠΎΠ². ΠΡΡΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ Π² ΡΠ΅Π°Π»ΠΈΠ·Π°ΡΠΈΠΈ ΠΌΠ΅ΠΆΠ΄ΠΈΡΡΠΈΠΏΠ»ΠΈΠ½Π°ΡΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄Π° Π²Π°ΠΆΠ½Π°Ρ ΡΠΎΠ»Ρ ΠΏΡΠΈΠ½Π°Π΄Π»Π΅ΠΆΠΈΡ ΠΌΠ΅ΠΆΠ΄ΠΈΡΡΠΈΠΏΠ»ΠΈΠ½Π°ΡΠ½ΡΠΌ ΠΊΡΡΡΠ°ΠΌ. ΠΠ±ΠΎΡΠ½ΠΎΠ²Π°Π½Ρ Π΄ΠΈΠ΄Π°ΠΊΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΈ ΠΌΠ΅ΡΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΏΡΠΈΠ½ΡΠΈΠΏΡ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠΊΠΈ ΡΠ΅ΠΎΡΠ΅ΡΠΈΠΊΠΎ-ΠΌΠΎΠ΄Π΅Π»ΡΠ½ΡΡ
ΠΌΠ΅ΠΆΠ΄ΠΈΡΡΠΈΠΏΠ»ΠΈΠ½Π°ΡΠ½ΡΡ
ΠΊΡΡΡΠΎΠ² Π΄Π»Ρ ΡΡΡΠ΄Π΅Π½ΡΠΎΠ² β Π±ΡΠ΄ΡΡΠΈΡ
ΠΏΠ΅Π΄Π°Π³ΠΎΠ³ΠΎΠ². ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ Π² ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΠΈ Ρ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ»ΠΎΠ³ΠΈΠ΅ΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π½ΠΈΡ Π³Π»Π°Π²Π½ΠΎΠΉ Π΄ΠΈΠ΄Π°ΠΊΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ΅Π»ΡΡ ΡΠ°ΠΊΠΈΡ
ΠΊΡΡΡΠΎΠ² ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΎΠ±ΡΡΠ΅Π½ΠΈΠ΅ ΡΠ΅Π°Π»ΠΈΠ·Π°ΡΠΈΠΈ ΡΡΠ°ΠΏΠΎΠ² ΡΠ΅ΡΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ (ΠΎΠ±ΡΠ΅ΠΊΡΠΎΠ² ΠΏΡΠΎΡΠ΅ΡΡΠΎΠ² ΠΈΠ»ΠΈ ΡΠ²Π»Π΅Π½ΠΈΠΉ) Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠΎΠ½Π½ΡΡ
ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΠΉ. ΠΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠ°Ρ Π·Π½Π°ΡΠΈΠΌΠΎΡΡΡ. ΠΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ ΡΡΠ°ΡΡΠΈ Π²Π½ΠΎΡΡΡ ΡΠ²ΠΎΠΉ Π²ΠΊΠ»Π°Π΄ Π² ΡΠ΅Π°Π»ΠΈΠ·Π°ΡΠΈΡ ΠΌΠ΅ΠΆΠ΄ΠΈΡΡΠΈΠΏΠ»ΠΈΠ½Π°ΡΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄Π° Π² ΠΌΠΎΠ΄Π΅ΡΠ½ΠΈΠ·Π°ΡΠΈΠΈ ΠΏΠΎΠ΄Π³ΠΎΡΠΎΠ²ΠΊΠΈ ΡΡΡΠ΄Π΅Π½ΡΠΎΠ² ΠΏΠ΅Π΄Π°Π³ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠΉ ΠΈ Π±ΡΠ΄ΡΡ ΠΈΠ½ΡΠ΅ΡΠ΅ΡΠ½Ρ ΠΊΠ°ΠΊ ΡΠ΅ΠΎΡΠ΅ΡΠΈΠΊΠ°ΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ, ΡΠ°ΠΊ ΠΈ ΠΏΡΠ΅ΠΏΠΎΠ΄Π°Π²Π°ΡΠ΅Π»ΡΠΌ, Π²Π΅Π΄ΡΡΠΈΠΌ ΠΏΡΠΎΡΠ΅ΡΡΠΈΠΎΠ½Π°Π»ΡΠ½ΡΡ ΠΏΠΎΠ΄Π³ΠΎΡΠΎΠ²ΠΊΡ ΡΡΡΠ΄Π΅Π½ΡΠΎΠ² ΠΏΠ΅Π΄Π°Π³ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠΉ ΠΈ Π²ΡΠ΅ΠΌ, ΠΊΡΠΎ Π·Π°ΠΈΠ½ΡΠ΅ΡΠ΅ΡΠΎΠ²Π°Π½ Π² Π±Π»Π°Π³ΠΎΠΏΠΎΠ»ΡΡΠ½ΠΎΠΌ Π±ΡΠ΄ΡΡΠ΅ΠΌ ΡΠΈΡΡΠ΅ΠΌΡ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ
- β¦