12,665 research outputs found
GRB000301C with peculiar afterglow emission
The CCD magnitudes in Johnson V and Cousins R and I photometric passbands are
determined for GRB 000301C afterglow starting ~ 1.5 day after the gamma-ray
burst. In fact we provide the earliest optical observations for this burst.
Light curves of the afterglow emissions in U, B, V, R, I, J and K' passbands
are obtained by combining the present measurements with the published data.
Flux decay shows a very uncommon variation relative to other well observed
GRBs. Overall, there is a steepening of the optical and near-infrared flux
decay caused by a geometric and sideways expanding jet. This is superimposed by
a short term variability especially during early time (Delta t < 8 days). The
cause of variability is not well understood, though it has occurred
simultaneously with similar amplitude in all the filters. We derive the early
and late time flux decay constants using jet model. The late time flux decay is
the steepest amongst the GRB OTs observed so far with alpha ~ 3. Steepening in
the flux decay seems to have started simultaneously around Delta t ~ 7.6 day in
all passbands. The value of spectral index in the optical-near IR region is ~
-1.0. Redshift determination with z=2.0335 indicates cosmological origin of the
GRB having a luminosity distance of 16.6 Gpc. Thus it becomes the second
farthest amongst the GRBs with known distances. An indirect estimate of the
fluence > 20 keV indicates, if isotropic,> =10^53 ergs of release of energy.
The enormous amount of released energy will be reduced, if the radiation is
beamed which is the case for this event. Using a jet break time of 7.6 days, we
infer a jet opening angle of ~ 0.15 radian. This means the energy released is
reduced by a factor of ~ 90 relative to the isotropic value.Comment: LaTeX file, 11 pages including 4 figures, uses psfig.sty, Bull.
Astron. Society of India(accepted, Sept, 2000 issue
Electronic states of PrCoO: X-ray photoemission spectroscopy and LDA+U density of states studies
Electronic states of PrCoO are studied using x-ray photoemission
spectroscopy. Pr 3d core level and valence band (VB) were recorded
using Mg K source. The core level spectrum shows that the 3d
level is split into two components of multiplicity 4 and 2, respectively due to
coupling of the spin states of the hole in 3d with Pr 4f holes spin
state. The observed splitting is 4.5 eV. The VB spectrum is interpreted using
density of states (DOS) calculations under LDA and LDA+U. It is noted that LDA
is not sufficient to explain the observed VB spectrum. Inclusion of on-site
Coulomb correlation for Co 3d electrons in LDA+U calculations gives DOS which
is useful in qualitative explanation of the ground state. However, it is
necessary to include interactions between Pr 4f electrons to get better
agreement with experimental VB spectrum. It is seen that the VB consists of Pr
4f, Co 3d and O 2p states. Pr 4f, Co 3d and O 2p bands are highly mixed
indicating strong hybridization of these three states. The band near the Fermi
level has about equal contributions from Pr 4f and O 2p states with somewhat
smaller contribution from Co 3d states. Thus in the Zaanen, Sawatzky, and Allen
scheme PrCoO can be considered as charge transfer insulator. The charge
transfer energy can be obtained using LDA DOS calculations and the
Coulomb-exchange energy U' from LDA+U. The explicit values for PrCoO are
= 3.9 eV and U' = 5.5 eV; the crystal field splitting and 3d bandwidth
of Co ions are also found to be 2.8 and 1.8 eV, respectively.Comment: 12 pages, 7 figures; to appear J. Phys.: Condens. Matte
BVRI CCD photometric standards in the field of GRB 990123
The CCD magnitudes in Johnson and Cousins photometric passbands are
determined for 18 stars in the field of GRB 990123. These measurements can be
used in carrying out precise CCD photometry of the optical transient of GRB
990123 using differential photometric techniques during non--photometric sky
conditions. A comparison with previous photometry indicates that the present
photmetry is more precise.Comment: Tex file, 5 pages with 1 figure. Bull. Astron. Society India, Vol. 27
(accepted
Post-correlation radio frequency interference classification methods
We describe and compare several post-correlation radio frequency interference
classification methods. As data sizes of observations grow with new and
improved telescopes, the need for completely automated, robust methods for
radio frequency interference mitigation is pressing. We investigated several
classification methods and find that, for the data sets we used, the most
accurate among them is the SumThreshold method. This is a new method formed
from a combination of existing techniques, including a new way of thresholding.
This iterative method estimates the astronomical signal by carrying out a
surface fit in the time-frequency plane. With a theoretical accuracy of 95%
recognition and an approximately 0.1% false probability rate in simple
simulated cases, the method is in practice as good as the human eye in finding
RFI. In addition it is fast, robust, does not need a data model before it can
be executed and works in almost all configurations with its default parameters.
The method has been compared using simulated data with several other mitigation
techniques, including one based upon the singular value decomposition of the
time-frequency matrix, and has shown better results than the rest.Comment: 14 pages, 12 figures (11 in colour). The software that was used in
the article can be downloaded from http://www.astro.rug.nl/rfi-software
- …