450 research outputs found
On the SuperDARN cross polar cap potential saturation effect
Variation of the cross polar cap potential (CPCP) with the interplanetary electric field (IEF), the merging electric field <I>E<sub>KL</sub></I>, the Polar Cap North (PCN) magnetic index, and the solar wind-magnetosphere coupling function <I>E<sub>C</sub></I> of Newell et al. (2007) is investigated by considering convection data collected by the Super Dual Auroral Radar Network (SuperDARN) in the Northern Hemisphere. Winter and summer observations are considered separately. All variations considered show close to linear trend at small values of the parameters and tendency for the saturation at large values. The threshold values starting from which the non-linearity was evident were estimated to be IEF*~<I>E<sub>KL</sub></I>*~3 mV/m, PCN*~3β4, and <I>E<sub>C</sub></I>*~1.5&times;10<sup>4</sup>. The data indicate that saturation starts at larger values of the above parameters and reaches larger (up to 10 kV) saturation levels during summer. Conclusions are supported by a limited data set of simultaneous SuperDARN observations in the Northern (summer) and Southern (winter) Hemispheres. It is argued that the SuperDARN CPCP saturation levels and the thresholds for the non-linearity to be seen are affected by the method of the CPCP estimates
Controlling Boron Diffusion during Rapid Thermal Annealing with CoImplantation by Amphoteric Impurity Atoms
A model for simulating the rapid thermal annealing of silicon structures implanted with boron and carbon is developed. The model provides a fair approximation of the process of boron diffusion in silicon, allowing for such effects as the electric field, the impact of the implanted carbon, and the clustering of boron. The migration process of interstitials is described according to their drift in the field of internal elastic stress
Observations of high-velocity SAPS-like flows with the King Salmon SuperDARN radar
In this study, a focused investigation of the potential for the King Salmon (KS) SuperDARN HF radar to monitor high-velocity flows near the equatorial edge of the auroral oval is undertaken. Events are presented with line-of-sight velocities as high as 2km/s, observed roughly along the L-shell. Statistically, the enhanced flows are shown to be typical for the dusk sector (16:00&ndash;23:00&nbsp;MLT), and the average velocity in this sector is larger (smaller) for winter (summer) conditions. It is also demonstrated that the high-velocity flows can be very dynamical with more localized enhancements existing for just several minutes. These short-lived enhancements occur when the luminosity at the equatorial edge of the auroral oval suddenly decreases during the substorm recovery phase. The short-lived velocity enhancements can be established because of proton and ion injections into the inner magnetosphere and low conductance of the ionosphere and not because of enhanced tail reconnection. This implies that some KS velocity enhancements have the same origin as subauroral polarization streams (SAPS)
ΠΠ ΠΠΠΠΠΠΠ ΠΠΠΠΠΠ Π ΠΠ‘Π§ΠΠ’ΠΠ«Π₯ Π₯ΠΠ ΠΠΠ’ΠΠ ΠΠ‘Π’ΠΠ ΠΠΠ’ΠΠΠΠ ΠΠ ΠΠ ΠΠΠΠΠΠΠΠ ΠΠΠΠΠ§ΠΠ‘ΠΠΠ₯ ΠΠ―ΠΠ£Π©ΠΠ₯ Π Π¨ΠΠ ΠΠΠΠ₯ ΠΠΠΠΠΠΠΠΠΠ₯ Π’ΠΠΠΠΠ ΠΠ’Π£Π Π Π‘ΠΠΠ ΠΠ‘Π’ΠΠ ΠΠΠ€ΠΠ ΠΠΠ ΠΠΠΠΠΠ―
A methodologyΒ for determination of estimated performance of main road-building materials (asphalt concrete and Ρold recycled material) within wide range of temperature and strain rate, is developed in the paper and it allows to obtain the whole spectrum of parameters required for calculation of a road pavement structure with minimum number of test results. This technique can be useful in designing material and pavement structure during its repair while using the method of cold in-place recycling because it enables significantly to reduce a number of laboratory tests. The methodology has been implemented as a computer program for its practical application.Π Π°Π·ΡΠ°Π±ΠΎΡΠ°Π½Π° ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠ° ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΠ°ΡΡΠ΅ΡΠ½ΡΡ
Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊ ΠΎΡΠ½ΠΎΠ²Π½ΡΡ
Π΄ΠΎΡΠΎΠΆΠ½ΠΎ-ΡΡΡΠΎΠΈΡΠ΅Π»ΡΠ½ΡΡ
ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΠΎΠ² (Π°ΡΡΠ°Π»ΡΡΠΎΠ±Π΅ΡΠΎΠ½ΠΎΠ² ΠΈ Π±Π΅ΡΠΎΠ½ΠΎΠ² Π½Π° ΠΠΠ) Π² ΡΠΈΡΠΎΠΊΠΎΠΌ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡ ΠΈ ΡΠΊΠΎΡΠΎΡΡΠ΅ΠΉ Π΄Π΅ΡΠΎΡΠΌΠ°ΡΠΈΠΈ, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡΡΠ°Ρ ΠΏΠΎ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡΠ½ΠΎΠΌΡ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Ρ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ² ΠΈΡΠΏΡΡΠ°Π½ΠΈΠΉ ΠΏΠΎΠ»ΡΡΠΈΡΡ Π²Π΅ΡΡ ΡΠΏΠ΅ΠΊΡΡ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ², Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΡΡ
Π΄Π»Ρ ΡΠ°ΡΡΠ΅ΡΠ° Π΄ΠΎΡΠΎΠΆΠ½ΠΎΠΉ ΠΊΠΎΠ½ΡΡΡΡΠΊΡΠΈΠΈ. ΠΠ°Π½Π½Π°Ρ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠ° ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΠΏΠΎΠ»Π΅Π·Π½Π° ΠΏΡΠΈ ΠΏΡΠΎΠ΅ΠΊΡΠΈΡΠΎΠ²Π°Π½ΠΈΠΈ ΡΠΎΡΡΠ°Π²Π° ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Π° ΠΈ ΠΊΠΎΠ½ΡΡΡΡΠΊΡΠΈΠΈ Π΄ΠΎΡΠΎΠΆΠ½ΠΎΠΉ ΠΎΠ΄Π΅ΠΆΠ΄Ρ ΠΏΡΠΈ Π΅Π΅ ΡΠ΅ΠΌΠΎΠ½ΡΠ΅ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ Ρ
ΠΎΠ»ΠΎΠ΄Π½ΠΎΠΉ ΡΠ΅Π³Π΅Π½Π΅ΡΠ°ΡΠΈΠΈ Π½Π° ΠΌΠ΅ΡΡΠ΅, ΡΠ°ΠΊ ΠΊΠ°ΠΊ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΡΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎ ΡΠ½ΠΈΠ·ΠΈΡΡ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ Π»Π°Π±ΠΎΡΠ°ΡΠΎΡΠ½ΡΡ
ΠΈΡΠΏΡΡΠ°Π½ΠΈΠΉ. ΠΠ»Ρ ΠΏΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠΈ ΠΎΠ½Π° Π±ΡΠ»Π° ΡΠ΅Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π° Π² Π²ΠΈΠ΄Π΅ ΠΊΠΎΠΌΠΏΡΡΡΠ΅ΡΠ½ΠΎΠΉ ΠΏΡΠΎΠ³ΡΠ°ΠΌΠΌΡ
ΠΠ΅ΡΠΎΠ΄ ΠΏΠΎΠ²ΡΡΠ΅Π½ΠΈΡ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΡΠ΅Ρ Π½ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΏΡΠΎΡΠ΅ΡΡΠ° ΡΠΊΠ»Π΅ΠΉΠΊΠΈ Π»ΠΈΠ½Π· ΠΈ Π΄ΠΎΡΡΠΎΠ²Π΅ΡΠ½Π°Ρ ΠΎΡΠ΅Π½ΠΊΠ° Π²ΡΡ ΠΎΠ΄Π½ΡΡ ΠΊΠΎΠ½ΡΡΠΎΠ»ΠΈΡΡΠ΅ΠΌΡΡ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ²
The use of glued lens components in optical devices improves the image quality of telescopic and photographic lenses or inverting systems by eliminating a number of aberrations, and also reduces light losses in the optical system of the device. The traditional production process of lenses gluing involves the sequential execution of a set of technological operations and takes a significant period of time. The purpose of the research was to improve the accuracy and productivity of the technological process of lenses gluing by improving the optical system of the control and measuring device and automating the operation of lenses optical axes combining by introducing an electronic reference system and mechanisms for micro-movements of optical parts.A technique is proposed for centering of two and three-component optical blocks by an autocollimation flare which provides a matching accuracy of less than 0.5 ΞΌm. The possibility of constructive modernization of the classic ST-41 autocollimation microscope with parallel separation of the displayed output information in the visual and television channels is shown. An automated system for controlling of the process of convergence of autocollimation points in the device is proposed. Using software methods an electronic grid template is formed on the monitor screen, onto which images of autocollimation points are projected. The decentering value 2Ξe is determined and a corrective control voltage is applied to three stepper motors and pushers for transverse movement of the glued optical part.Specialized software has been developed for automatically bringing the position of the autocollimating crosshair to the center of the measuring scale of the grid based on a combination of two methods of βleast squaresβ and βsuccessive approximationβ. Compliance with a number of technological transitions and the accompanying control of geometric parameters make it possible to achieve greater accuracy in determining the eccentricity of the crosshairs of the aligned optical axes of the glued lenses.Β ΠΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π² ΠΎΠΏΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΡΠΈΠ±ΠΎΡΠ°Ρ
ΡΠΊΠ»Π΅Π΅Π½Π½ΡΡ
Π»ΠΈΠ½Π·ΠΎΠ²ΡΡ
ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠΎΠ² ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΠΏΠΎΠ²ΡΡΠΈΡΡ ΠΊΠ°ΡΠ΅ΡΡΠ²ΠΎ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΡ ΡΠ΅Π»Π΅ΡΠΊΠΎΠΏΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΈ ΡΠΎΡΠΎΠ³ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΎΠ±ΡΠ΅ΠΊΡΠΈΠ²ΠΎΠ² ΠΈΠ»ΠΈ ΠΎΠ±ΠΎΡΠ°ΡΠΈΠ²Π°ΡΡΠΈΡ
ΡΠΈΡΡΠ΅ΠΌ Π·Π° ΡΡΡΡ ΡΡΡΡΠ°Π½Π΅Π½ΠΈΡ ΡΡΠ΄Π° Π°Π±Π΅ΡΡΠ°ΡΠΈΠΉ, Π° ΡΠ°ΠΊΠΆΠ΅ ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠΈΠ²Π°Π΅Ρ ΡΠΌΠ΅Π½ΡΡΠ΅Π½ΠΈΠ΅ ΡΠ²Π΅ΡΠΎΠ²ΡΡ
ΠΏΠΎΡΠ΅ΡΡ Π² ΠΎΠΏΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΠ΅ ΠΏΡΠΈΠ±ΠΎΡΠ°. Π’ΡΠ°Π΄ΠΈΡΠΈΠΎΠ½Π½ΡΠΉ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΡΡΠ²Π΅Π½Π½ΡΠΉ ΠΏΡΠΎΡΠ΅ΡΡ ΡΠΊΠ»Π΅ΠΈΠ²Π°Π½ΠΈΡ Π»ΠΈΠ½Π· ΠΏΡΠ΅Π΄ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π΅Ρ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΠ΅ Π²ΡΠΏΠΎΠ»Π½Π΅Π½ΠΈΠ΅ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ° ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠΉ ΠΈ Π·Π°Π½ΠΈΠΌΠ°Π΅Ρ ΡΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΠΉ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΠΊ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ. Π¦Π΅Π»Ρ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ Π·Π°ΠΊΠ»ΡΡΠ°Π»Π°ΡΡ Π² ΠΏΠΎΠ²ΡΡΠ΅Π½ΠΈΠΈ ΡΠΎΡΠ½ΠΎΡΡΠΈ ΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΏΡΠΎΡΠ΅ΡΡΠ° ΡΠΊΠ»Π΅ΠΉΠΊΠΈ Π»ΠΈΠ½Π· Π·Π° ΡΡΡΡ ΡΠΎΠ²Π΅ΡΡΠ΅Π½ΡΡΠ²ΠΎΠ²Π°Π½ΠΈΡ ΠΎΠΏΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ ΠΊΠΎΠ½ΡΡΠΎΠ»ΡΠ½ΠΎ-ΠΈΠ·ΠΌΠ΅ΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠΈΠ±ΠΎΡΠ° ΠΈ Π°Π²ΡΠΎΠΌΠ°ΡΠΈΠ·Π°ΡΠΈΠΈ ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠΈ ΡΠΎΠ²ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΠΎΠΏΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΎΡΠ΅ΠΉ Π»ΠΈΠ½Π· ΠΏΡΡΡΠΌ Π²Π²Π΅Π΄Π΅Π½ΠΈΡ ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ ΠΎΡΡΡΡΡΠ° ΠΈ ΠΌΠ΅Ρ
Π°Π½ΠΈΠ·ΠΌΠΎΠ² Π΄Π»Ρ ΠΌΠΈΠΊΡΠΎΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΠΉ ΠΎΠΏΡΠΈΡΠ΅ΡΠΊΠΈΡ
Π΄Π΅ΡΠ°Π»Π΅ΠΉ.ΠΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½Π° ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠ° ΡΠ΅Π½ΡΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ Π΄Π²ΡΡ
- ΠΈ ΡΡΡΡ
ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠ½ΡΡ
ΠΎΠΏΡΠΈΡΠ΅ΡΠΊΠΈΡ
Π±Π»ΠΎΠΊΠΎΠ² ΠΏΠΎ Π°Π²ΡΠΎΠΊΠΎΠ»Π»ΠΈΠΌΠ°ΡΠΈΠΎΠ½Π½ΠΎΠΌΡ Π±Π»ΠΈΠΊΡ, ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠΈΠ²Π°ΡΡΠ°Ρ ΡΠΎΡΠ½ΠΎΡΡΡ ΡΠΎΠ²ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΠΌΠ΅Π½Π΅Π΅ 0,5 ΠΌΠΊΠΌ. ΠΠΎΠΊΠ°Π·Π°Π½Π° Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ Β ΠΊΠΎΠ½ΡΡΡΡΠΊΡΠΈΠ²Π½ΠΎΠΉ Β ΠΌΠΎΠ΄Π΅ΡΠ½ΠΈΠ·Π°ΡΠΈΠΈ Β ΠΊΠ»Π°ΡΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Β Π°Π²ΡΠΎΠΊΠΎΠ»Π»ΠΈΠΌΠ°ΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ Β ΠΌΠΈΠΊΡΠΎΡΠΊΠΎΠΏΠ° Π‘Π’-41 Β Ρ Β ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΡΠΌ Β ΡΠ°Π·Π΄Π΅Π»Π΅Π½ΠΈΠ΅ΠΌ Β ΠΎΡΠΎΠ±ΡΠ°ΠΆΠ°Π΅ΠΌΠΎΠΉ Β Π²ΡΡ
ΠΎΠ΄Π½ΠΎΠΉ Β ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠΈ Β Π² Β Π²ΠΈΠ·ΡΠ°Π»ΡΠ½ΠΎΠΌ Β ΠΈ ΡΠ΅Π»Π΅Π²ΠΈΠ·ΠΈΠΎΠ½Π½ΠΎΠΌ ΠΊΠ°Π½Π°Π»Π°Ρ
. ΠΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½Π° Π°Π²ΡΠΎΠΌΠ°ΡΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Π½Π°Ρ ΡΠΈΡΡΠ΅ΠΌΠ° ΡΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ ΠΏΡΠΎΡΠ΅ΡΡΠΎΠΌ ΡΠ²Π΅Π΄Π΅Π½ΠΈΡ Π°Π²ΡΠΎΠΊΠΎΠ»Π»ΠΈΠΌΠ°ΡΠΈΠΎΠ½Π½ΡΡ
ΡΠΎΡΠ΅ΠΊ Π² ΠΏΡΠΈΠ±ΠΎΡΠ΅. ΠΡΠΎΠ³ΡΠ°ΠΌΠΌΠ½ΡΠΌΠΈ ΠΌΠ΅ΡΠΎΠ΄Π°ΠΌΠΈ Π½Π° ΡΠΊΡΠ°Π½Π΅ ΠΌΠΎΠ½ΠΈΡΠΎΡΠ° ΡΠΎΡΠΌΠΈΡΡΠ΅ΡΡΡ ΡΠ°Π±Π»ΠΎΠ½ ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΠΎΠΉ ΡΠ΅ΡΠΊΠΈ, Π½Π° ΠΊΠΎΡΠΎΡΡΡ ΠΏΡΠΎΠ΅ΡΠΈΡΡΡΡΡΡ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΡ Π°Π²ΡΠΎΠΊΠΎΠ»Π»ΠΈΠΌΠ°ΡΠΈΠΎΠ½Π½ΡΡ
ΡΠΎΡΠ΅ΠΊ, ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½Π° Π΄Π΅ΡΠ΅Π½ΡΡΠΈΡΠ½ΠΎΡΡΠΈ 2Ξe ΠΈ ΠΏΠΎΠ΄Π°ΡΡΡΡ ΠΊΠΎΡΡΠ΅ΠΊΡΠΈΡΡΡΡΠ΅Π΅ ΡΠΏΡΠ°Π²Π»ΡΡΡΠ΅Π΅ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠ΅ Π½Π° ΡΡΠΈ ΡΠ°Π³ΠΎΠ²ΡΡ
Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ ΠΈ ΡΠΎΠ»ΠΊΠ°ΡΠ΅Π»ΠΈ Π΄Π»Ρ ΠΏΠΎΠΏΠ΅ΡΠ΅ΡΠ½ΠΎΠΉ ΠΏΠΎΠ΄Π²ΠΈΠΆΠΊΠΈ ΠΏΡΠΈΠΊΠ»Π΅ΠΈΠ²Π°Π΅ΠΌΠΎΠΉ ΠΎΠΏΡΠΈΡΠ΅ΡΠΊΠΎΠΉ Π΄Π΅ΡΠ°Π»ΠΈ. Π Π°Π·ΡΠ°Π±ΠΎΡΠ°Π½ΠΎ ΡΠΏΠ΅ΡΠΈΠ°Π»ΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠ΅ ΠΏΡΠΎΠ³ΡΠ°ΠΌΠΌΠ½ΠΎΠ΅ ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠ΅Π½ΠΈΠ΅ Π΄Π»Ρ Π°Π²ΡΠΎΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠ²Π΅Π΄Π΅Π½ΠΈΡ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ Π°Π²ΡΠΎΠΊΠΎΠ»Π»ΠΈΠΌΠ°ΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΏΠ΅ΡΠ΅ΠΊΡΠ΅ΡΡΠΈΡ Π² ΡΠ΅Π½ΡΡ ΠΈΠ·ΠΌΠ΅ΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ ΡΠΊΠ°Π»Ρ ΡΠ΅ΡΠΊΠΈ, ΠΎΡΠ½ΠΎΠ²Π°Π½Π½ΠΎΠ΅ Π½Π° ΡΠΎΡΠ΅ΡΠ°Π½ΠΈΠΈ Π΄Π²ΡΡ
ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ² β Β«Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠΈΡ
ΠΊΠ²Π°Π΄ΡΠ°ΡΠΎΠ²Β» ΠΈ Β«ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠΈΠ±Π»ΠΈΠΆΠ΅Π½ΠΈΡΒ». Π‘ΠΎΠ±Π»ΡΠ΄Π΅Π½ΠΈΠ΅ ΡΡΠ΄Π° ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΠ΅ΡΠ΅Ρ
ΠΎΠ΄ΠΎΠ² ΠΈ ΡΠΎΠΏΡΡΡΡΠ²ΡΡΡΠΈΠΉ ΠΊΠΎΠ½ΡΡΠΎΠ»Ρ Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ² ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡΡ Π΄ΠΎΠ±ΠΈΡΡΡΡ Π±ΠΎΠ»ΡΡΠ΅ΠΉ ΡΠΎΡΠ½ΠΎΡΡΠΈ ΠΏΡΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠΈ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ ΡΠΊΡΡΠ΅Π½ΡΡΠΈΡΠΈΡΠ΅ΡΠ° ΠΏΠ΅ΡΠ΅ΠΊΡΠ΅ΡΡΠΈΡ ΡΠΎΠ²ΠΌΠ΅ΡΠ°Π΅ΠΌΡΡ
ΠΎΠΏΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΎΡΠ΅ΠΉ
Effect of Nickel Administration in vivo on the Testicular Structure in Male Mice
The aim of this study was to describe the effects of nickel (NiCl2) on murine testicular structure. Experimental animals were injected intraperitoneally with a single dose of 20 mg NiCl2 per kg of body mass (group A, n = 5) and 40 mg NiCl2 per kg b. m. (group B, n = 5). The group without injection (n = 5) was the control (C). Animals were killed 48 hours after administration of nickel. The body mass of animals, the mass of testes and the testes : body mass ratio were not significantly affected. In both experimental groups a significant (p p p < 0.05 - 0.001) after nickel administration. Evaluation of the lumen diameter in the seminiferous tubule showed a significant increase in both experimental groups. The data of the perimeter of seminiferous tubules corresponded with those of the seminiferous tubule diameter. TUNEL assay detected a higher frequency of localized apoptosis in the interstitium of nickel-administered animals compared to control group. Our findings clearly suggest a negative effect of nickel on the structure as well as on the function of the seminferous epithelium at the site of spermatozoa production
- β¦