450 research outputs found

    On the SuperDARN cross polar cap potential saturation effect

    Get PDF
    Variation of the cross polar cap potential (CPCP) with the interplanetary electric field (IEF), the merging electric field <I>E<sub>KL</sub></I>, the Polar Cap North (PCN) magnetic index, and the solar wind-magnetosphere coupling function <I>E<sub>C</sub></I> of Newell et al. (2007) is investigated by considering convection data collected by the Super Dual Auroral Radar Network (SuperDARN) in the Northern Hemisphere. Winter and summer observations are considered separately. All variations considered show close to linear trend at small values of the parameters and tendency for the saturation at large values. The threshold values starting from which the non-linearity was evident were estimated to be IEF*~<I>E<sub>KL</sub></I>*~3 mV/m, PCN*~3–4, and <I>E<sub>C</sub></I>*~1.5×10<sup>4</sup>. The data indicate that saturation starts at larger values of the above parameters and reaches larger (up to 10 kV) saturation levels during summer. Conclusions are supported by a limited data set of simultaneous SuperDARN observations in the Northern (summer) and Southern (winter) Hemispheres. It is argued that the SuperDARN CPCP saturation levels and the thresholds for the non-linearity to be seen are affected by the method of the CPCP estimates

    Controlling Boron Diffusion during Rapid Thermal Annealing with CoImplantation by Amphoteric Impurity Atoms

    Get PDF
    A model for simulating the rapid thermal annealing of silicon structures implanted with boron and carbon is developed. The model provides a fair approximation of the process of boron diffusion in silicon, allowing for such effects as the electric field, the impact of the implanted carbon, and the clustering of boron. The migration process of interstitials is described according to their drift in the field of internal elastic stress

    Observations of high-velocity SAPS-like flows with the King Salmon SuperDARN radar

    Get PDF
    In this study, a focused investigation of the potential for the King Salmon (KS) SuperDARN HF radar to monitor high-velocity flows near the equatorial edge of the auroral oval is undertaken. Events are presented with line-of-sight velocities as high as 2km/s, observed roughly along the L-shell. Statistically, the enhanced flows are shown to be typical for the dusk sector (16:00–23:00 MLT), and the average velocity in this sector is larger (smaller) for winter (summer) conditions. It is also demonstrated that the high-velocity flows can be very dynamical with more localized enhancements existing for just several minutes. These short-lived enhancements occur when the luminosity at the equatorial edge of the auroral oval suddenly decreases during the substorm recovery phase. The short-lived velocity enhancements can be established because of proton and ion injections into the inner magnetosphere and low conductance of the ionosphere and not because of enhanced tail reconnection. This implies that some KS velocity enhancements have the same origin as subauroral polarization streams (SAPS)

    ΠŸΠ ΠžΠ“ΠΠžΠ—Π˜Π ΠžΠ’ΠΠΠ˜Π• РАБЧЕВНЫΠ₯ Π₯ΠΠ ΠΠšΠ’Π•Π Π˜Π‘Π’Π˜Πš Π‘Π•Π’ΠžΠΠžΠ’ НА ΠžΠ Π“ΠΠΠžΠ“Π˜Π”Π ΠΠ’Π›Π˜Π§Π•Π‘ΠšΠ˜Π₯ Π’Π―Π–Π£Π©Π˜Π₯ Π’ ШИРОКИΠ₯ Π”Π˜ΠΠŸΠΠ—ΠžΠΠΠ₯ Π’Π•ΠœΠŸΠ•Π ΠΠ’Π£Π  И Π‘ΠšΠžΠ ΠžΠ‘Π’Π•Π™ Π”Π•Π€ΠžΠ ΠœΠ˜Π ΠžΠ’ΠΠΠ˜Π―

    Get PDF
    A methodologyΒ  for determination of estimated performance of main road-building materials (asphalt concrete and сold recycled material) within wide range of temperature and strain rate, is developed in the paper and it allows to obtain the whole spectrum of parameters required for calculation of a road pavement structure with minimum number of test results. This technique can be useful in designing material and pavement structure during its repair while using the method of cold in-place recycling because it enables significantly to reduce a number of laboratory tests. The methodology has been implemented as a computer program for its practical application.Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π° ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° опрСдСлСния расчСтных характСристик основных Π΄ΠΎΡ€ΠΎΠΆΠ½ΠΎ-ΡΡ‚Ρ€ΠΎΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ² (Π°ΡΡ„Π°Π»ΡŒΡ‚ΠΎΠ±Π΅Ρ‚ΠΎΠ½ΠΎΠ² ΠΈ Π±Π΅Ρ‚ΠΎΠ½ΠΎΠ² Π½Π° ΠžΠ“Π’) Π² ΡˆΠΈΡ€ΠΎΠΊΠΎΠΌ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€ ΠΈ скоростСй Π΄Π΅Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰Π°Ρ ΠΏΠΎ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΠΌΡƒ количСству Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² испытаний ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ вСсь спСктр ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ², Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΡ‹Ρ… для расчСта Π΄ΠΎΡ€ΠΎΠΆΠ½ΠΎΠΉ конструкции. Данная ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΠΏΠΎΠ»Π΅Π·Π½Π° ΠΏΡ€ΠΈ ΠΏΡ€ΠΎΠ΅ΠΊΡ‚ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ состава ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π° ΠΈ конструкции Π΄ΠΎΡ€ΠΎΠΆΠ½ΠΎΠΉ ΠΎΠ΄Π΅ΠΆΠ΄Ρ‹ ΠΏΡ€ΠΈ Π΅Π΅ Ρ€Π΅ΠΌΠΎΠ½Ρ‚Π΅ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Ρ…ΠΎΠ»ΠΎΠ΄Π½ΠΎΠΉ Ρ€Π΅Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠΈ Π½Π° мСстС, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ позволяСт сущСствСнно ΡΠ½ΠΈΠ·ΠΈΡ‚ΡŒ количСство Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€Π½Ρ‹Ρ… испытаний. Для практичСского примСнСния ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ ΠΎΠ½Π° Π±Ρ‹Π»Π° Ρ€Π΅Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π° Π² Π²ΠΈΠ΄Π΅ ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Π½ΠΎΠΉ ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΡ‹

    ΠœΠ΅Ρ‚ΠΎΠ΄ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΡ эффСктивности тСхнологичСского процСсса склСйки Π»ΠΈΠ½Π· ΠΈ достовСрная ΠΎΡ†Π΅Π½ΠΊΠ° Π²Ρ‹Ρ…ΠΎΠ΄Π½Ρ‹Ρ… ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Ρ… ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ²

    Get PDF
    The use of glued lens components in optical devices improves the image quality of telescopic and photographic lenses or inverting systems by eliminating a number of aberrations, and also reduces light losses in the optical system of the device. The traditional production process of lenses gluing involves the sequential execution of a set of technological operations and takes a significant period of time. The purpose of the research was to improve the accuracy and productivity of the technological process of lenses gluing by improving the optical system of the control and measuring device and automating the operation of lenses optical axes combining by introducing an electronic reference system and mechanisms for micro-movements of optical parts.A technique is proposed for centering of two and three-component optical blocks by an autocollimation flare which provides a matching accuracy of less than 0.5 ΞΌm. The possibility of constructive modernization of the classic ST-41 autocollimation microscope with parallel separation of the displayed output information in the visual and television channels is shown. An automated system for controlling of the process of convergence of autocollimation points in the device is proposed. Using software methods an electronic grid template is formed on the monitor screen, onto which images of autocollimation points are projected. The decentering value 2Ξ”e is determined and a corrective control voltage is applied to three stepper motors and pushers for transverse movement of the glued optical part.Specialized software has been developed for automatically bringing the position of the autocollimating crosshair to the center of the measuring scale of the grid based on a combination of two methods of β€œleast squares” and β€œsuccessive approximation”. Compliance with a number of technological transitions and the accompanying control of geometric parameters make it possible to achieve greater accuracy in determining the eccentricity of the crosshairs of the aligned optical axes of the glued lenses.Β ΠŸΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π² оптичСских ΠΏΡ€ΠΈΠ±ΠΎΡ€Π°Ρ… склССнных Π»ΠΈΠ½Π·ΠΎΠ²Ρ‹Ρ… ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠ² позволяСт ΠΏΠΎΠ²Ρ‹ΡΠΈΡ‚ΡŒ качСство изобраТСния тСлСскопичСских ΠΈ фотографичСских ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΈΠ²ΠΎΠ² ΠΈΠ»ΠΈ ΠΎΠ±ΠΎΡ€Π°Ρ‡ΠΈΠ²Π°ΡŽΡ‰ΠΈΡ… систСм Π·Π° счёт устранСния ряда Π°Π±Π΅Ρ€Ρ€Π°Ρ†ΠΈΠΉ, Π° Ρ‚Π°ΠΊΠΆΠ΅ обСспСчиваСт ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΠ΅ свСтовых ΠΏΠΎΡ‚Π΅Ρ€ΡŒ Π² оптичСской систСмС ΠΏΡ€ΠΈΠ±ΠΎΡ€Π°. Π’Ρ€Π°Π΄ΠΈΡ†ΠΈΠΎΠ½Π½Ρ‹ΠΉ производствСнный процСсс склСивания Π»ΠΈΠ½Π· прСдусматриваСт ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½ΠΈΠ΅ комплСкса тСхнологичСских ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΉ ΠΈ Π·Π°Π½ΠΈΠΌΠ°Π΅Ρ‚ сущСствСнный ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΎΠΊ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ. ЦСль исслСдований Π·Π°ΠΊΠ»ΡŽΡ‡Π°Π»Π°ΡΡŒ Π² ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠΈ точности ΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ тСхнологичСского процСсса склСйки Π»ΠΈΠ½Π· Π·Π° счёт ΡΠΎΠ²Π΅Ρ€ΡˆΠ΅Π½ΡΡ‚Π²ΠΎΠ²Π°Π½ΠΈΡ оптичСской систСмы ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½ΠΎ-ΠΈΠ·ΠΌΠ΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΏΡ€ΠΈΠ±ΠΎΡ€Π° ΠΈ Π°Π²Ρ‚ΠΎΠΌΠ°Ρ‚ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ совмСщСния оптичСских осСй Π»ΠΈΠ½Π· ΠΏΡƒΡ‚Ρ‘ΠΌ ввСдСния элСктронной систСмы отсчёта ΠΈ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ² для ΠΌΠΈΠΊΡ€ΠΎΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠΉ оптичСских Π΄Π΅Ρ‚Π°Π»Π΅ΠΉ.ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π° ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° цСнтрирования Π΄Π²ΡƒΡ…- ΠΈ Ρ‚Ρ€Ρ‘Ρ…ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π½Ρ‹Ρ… оптичСских Π±Π»ΠΎΠΊΠΎΠ² ΠΏΠΎ Π°Π²Ρ‚ΠΎΠΊΠΎΠ»Π»ΠΈΠΌΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΌΡƒ Π±Π»ΠΈΠΊΡƒ, ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°ΡŽΡ‰Π°Ρ Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒ совмСщСния ΠΌΠ΅Π½Π΅Π΅ 0,5 ΠΌΠΊΠΌ. Показана Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ  конструктивной Β ΠΌΠΎΠ΄Π΅Ρ€Π½ΠΈΠ·Π°Ρ†ΠΈΠΈ  классичСского Β Π°Π²Ρ‚ΠΎΠΊΠΎΠ»Π»ΠΈΠΌΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ  микроскопа Π‘Π’-41  с Β ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ΠΌ Β Ρ€Π°Π·Π΄Π΅Π»Π΅Π½ΠΈΠ΅ΠΌ Β ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ°Π΅ΠΌΠΎΠΉ Β Π²Ρ‹Ρ…ΠΎΠ΄Π½ΠΎΠΉ Β ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ Β Π² Β Π²ΠΈΠ·ΡƒΠ°Π»ΡŒΠ½ΠΎΠΌ Β ΠΈ Ρ‚Π΅Π»Π΅Π²ΠΈΠ·ΠΈΠΎΠ½Π½ΠΎΠΌ ΠΊΠ°Π½Π°Π»Π°Ρ…. ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π° автоматизированная систСма управлСния процСссом свСдСния Π°Π²Ρ‚ΠΎΠΊΠΎΠ»Π»ΠΈΠΌΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… Ρ‚ΠΎΡ‡Π΅ΠΊ Π² ΠΏΡ€ΠΈΠ±ΠΎΡ€Π΅. ΠŸΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½Ρ‹ΠΌΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ Π½Π° экранС ΠΌΠΎΠ½ΠΈΡ‚ΠΎΡ€Π° формируСтся шаблон элСктронной сСтки, Π½Π° ΠΊΠΎΡ‚ΠΎΡ€ΡƒΡŽ ΠΏΡ€ΠΎΠ΅Ρ†ΠΈΡ€ΡƒΡŽΡ‚ΡΡ изобраТСния Π°Π²Ρ‚ΠΎΠΊΠΎΠ»Π»ΠΈΠΌΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… Ρ‚ΠΎΡ‡Π΅ΠΊ, опрСдСляСтся Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° дСцСнтричности 2Ξ”e ΠΈ подаётся ΠΊΠΎΡ€Ρ€Π΅ΠΊΡ‚ΠΈΡ€ΡƒΡŽΡ‰Π΅Π΅ ΡƒΠΏΡ€Π°Π²Π»ΡΡŽΡ‰Π΅Π΅ напряТСниС Π½Π° Ρ‚Ρ€ΠΈ ΡˆΠ°Π³ΠΎΠ²Ρ‹Ρ… двигатСля ΠΈ Ρ‚ΠΎΠ»ΠΊΠ°Ρ‚Π΅Π»ΠΈ для ΠΏΠΎΠΏΠ΅Ρ€Π΅Ρ‡Π½ΠΎΠΉ ΠΏΠΎΠ΄Π²ΠΈΠΆΠΊΠΈ ΠΏΡ€ΠΈΠΊΠ»Π΅ΠΈΠ²Π°Π΅ΠΌΠΎΠΉ оптичСской Π΄Π΅Ρ‚Π°Π»ΠΈ. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½ΠΎ спСциализированноС ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½ΠΎΠ΅ обСспСчСниС для автоматичСского свСдСния полоТСния Π°Π²Ρ‚ΠΎΠΊΠΎΠ»Π»ΠΈΠΌΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ пСрСкрСстия Π² Ρ†Π΅Π½Ρ‚Ρ€ ΠΈΠ·ΠΌΠ΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΡˆΠΊΠ°Π»Ρ‹ сСтки, основанноС Π½Π° сочСтании Π΄Π²ΡƒΡ… ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² – Β«Π½Π°ΠΈΠΌΠ΅Π½ΡŒΡˆΠΈΡ… ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΎΠ²Β» ΠΈ Β«ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ приблиТСния». БоблюдСниС ряда тСхнологичСских ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄ΠΎΠ² ΠΈ ΡΠΎΠΏΡƒΡ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠΉ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒ гСомСтричСских ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ Π΄ΠΎΠ±ΠΈΡ‚ΡŒΡΡ большСй точности ΠΏΡ€ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠΈ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ эксцСнтриситСта пСрСкрСстия совмСщаСмых оптичСских осСй

    Effect of Nickel Administration in vivo on the Testicular Structure in Male Mice

    Full text link
    The aim of this study was to describe the effects of nickel (NiCl2) on murine testicular structure. Experimental animals were injected intraperitoneally with a single dose of 20 mg NiCl2 per kg of body mass (group A, n = 5) and 40 mg NiCl2 per kg b. m. (group B, n = 5). The group without injection (n = 5) was the control (C). Animals were killed 48 hours after administration of nickel. The body mass of animals, the mass of testes and the testes : body mass ratio were not significantly affected. In both experimental groups a significant (p p p < 0.05 - 0.001) after nickel administration. Evaluation of the lumen diameter in the seminiferous tubule showed a significant increase in both experimental groups. The data of the perimeter of seminiferous tubules corresponded with those of the seminiferous tubule diameter. TUNEL assay detected a higher frequency of localized apoptosis in the interstitium of nickel-administered animals compared to control group. Our findings clearly suggest a negative effect of nickel on the structure as well as on the function of the seminferous epithelium at the site of spermatozoa production
    • …
    corecore