18 research outputs found

    Function of bacteriophage G7C esterase tailspike in host cell adsorption.

    Get PDF
    Bacteriophages recognize and bind to their hosts with the help of receptor-binding proteins (RBPs) that emanate from the phage particle in the form of fibers or tailspikes. RBPs show a great variability in their shapes, sizes, and location on the particle. Some RBPs are known to depolymerize surface polysaccharides of the host while others show no enzymatic activity. Here we report that both RBPs of podovirus G7C - tailspikes gp63.1 and gp66 - are essential for infection of its natural host bacterium E. coli 4s that populates the equine intestinal tract. We characterize the structure and function of gp63.1 and show that unlike any previously described RPB, gp63.1 deacetylates surface polysaccharides of E. coli 4s leaving the backbone of the polysaccharide intact. We demonstrate that gp63.1 and gp66 form a stable complex, in which the N-terminal part of gp66 serves as an attachment site for gp63.1 and anchors the gp63.1-gp66 complex to the G7C tail. The esterase domain of gp63.1 as well as domains mediating the gp63.1-gp66 interaction is widespread among all three families of tailed bacteriophages.The work of the laboratory in the Winogradsky Institute was partially supported by Russian Science Foundation (RSF) grant #15–15‐0013

    The Burden of Survivors: How Can Phage Infection Impact Non-Infected Bacteria?

    Full text link
    The contemporary understanding of complex interactions in natural microbial communities and the numerous mechanisms of bacterial communication challenge the classical concept of bacteria as unicellular organisms. Microbial populations, especially those in densely populated habitats, appear to behave cooperatively, coordinating their reactions in response to different stimuli and behaving as a quasi-tissue. The reaction of such systems to viral infection is likely to go beyond each cell or species tackling the phage attack independently. Bacteriophage infection of a fraction of the microbial community may also exert an influence on the physiological state and/or phenotypic features of those cells that have not yet had direct contact with the virus or are even intrinsically unable to become infected by the particular virus. These effects may be mediated by sensing the chemical signals released by lysing or by infected cells as well as by more indirect mechanisms

    New Effective Method of Lactococcus Genome Editing Using Guide RNA-Directed Transposition

    Full text link
    Lactococcus lactis is an important industrial microorganism and a widely used model object for research in the field of lactic acid bacteria (LAB) biology. The development of new L. lactis and related LAB strains with improved properties, including phage-resistant strains for dairy fermentation, LAB-based vaccines or strains with altered genotypes for research purposes, are hindered by the lack of genome-editing tools that allow for the easy and straightforward incorporation of a significant amount of the novel genetic material, such as large genes or operons, into the chromosomes of these bacteria. We recently employed a suggested system based on the CRISPR–Cas-associated transposon for the editing of the L. lactis genome. After the in-depth redesign of the system, we were able to achieve the stable incorporation of the fragments that were sized up to 10 kbp into the L. lactis beta-galactosidase gene. The efficiency of editing under the optimized conditions were 2 × 10−4 and 4 × 10−5 for 1 kbp and 10 kbp, respectively, which are sufficient for fast and easy modifications if a positive selection marker can be used

    Isolation of GAL Tularemia Bacteriophage and its Characteristics

    Full text link
    Temperate tularemia bacteriophage was for the first time isolated from the organs of guinea-pig infected with live tularemia vaccine strain N 15 of RIEH line. Negative colonies of bacteriophage were up to 0.2 mm in diameter with incomplete lysis zone at the periphery. In view of the results of electronic microscopy bacteriophage represented filamentous carpuscules. Bacteriophage lyzed bacteria of three subtypes of tularemia etiological agent and bacteria of the main species of legionellosis etiological agents. The simple use of bacteriophage allows to recommend new tularemia bacteriophage GAL for practical application

    RB49-like Bacteriophages Recognize O Antigens as One of the Alternative Primary Receptors

    Full text link
    The power of most of the enterobacterial O antigen types to provide robust protection against direct recognition of the cell surface by bacteriophage receptor-recognition proteins (RBP) has been recently recognized. The bacteriophages infecting O antigen producing strains of E. coli employ various strategies to tackle this nonspecific protection. T-even related phages, including RB49-like viruses, often have wide host ranges, being considered good candidates for use in phage therapy. However, the mechanisms by which these phages overcome the O antigen barrier remain unknown. We demonstrate here that RB49 and related phages Cognac49 and Whisky49 directly use certain types of O antigen as their primary receptors recognized by the virus long tail fibers (LTF) RBP gp38, so the O antigen becomes an attractant instead of an obstacle. Simultaneously to recognize multiple O antigen types, LTFs of each of these phages can bind to additional receptors, such as OmpA protein, enabling them to infect some rough strains of E. coli. We speculate that the mechanical force of the deployment of the short tail fibers (STF) triggered by the LTF binding to the O antigen or underneath of it, allows the receptor binding domains of STF to break through the O polysaccharide layer

    Genomic Sequencing and Biological Characteristics of a Novel Escherichia Coli Bacteriophage 9g, a Putative Representative of a New Siphoviridae Genus

    Full text link
    Bacteriophage 9g was isolated from horse feces using Escherichia coli C600 as a host strain. Phage 9g has a slightly elongated capsid 62 × 76 nm in diameter and a non-contractile tail about 185 nm long. The complete genome sequence of this bacteriophage consists of 56,703 bp encoding 70 predicted open reading frames. The closest relative of phage 9g is phage PhiJL001 infecting marine alpha-proteobacterium associated with Ircinia strobilina sponge, sharing with phage 9g 51% of amino acid identity in the main capsid protein sequence. The DNA of 9g is resistant to most restriction endonucleases tested, indicating the presence of hypermodified bases. The gene cluster encoding a biosynthesis pathway similar to biosynthesis of the unusual nucleoside queuosine was detected in the phage 9g genome. The genomic map organization is somewhat similar to the typical temperate phage gene layout but no integrase gene was detected. Phage 9g efficiently forms stable associations with its host that continues to produce the phage over multiple passages, but the phage can be easily eliminated via viricide treatment indicating that no true lysogens are formed. Since the sequence, genomic organization and biological properties of bacteriophage 9g are clearly distinct from other known Enterobacteriaceae phages, we propose to consider it as the representative of a novel genus of the Siphoviridae family

    Branched Lateral Tail Fiber Organization in T5-Like Bacteriophages DT57C and DT571/2 is Revealed by Genetic and Functional Analysis

    Full text link
    The T5-like siphoviruses DT57C and DT571/2, isolated from horse feces, are very closely related to each other, and most of their structural proteins are also nearly identical to T5 phage. Their LTFs (L-shaped tail fibers), however, are composed of two proteins, LtfA and LtfB, instead of the single Ltf of bacteriophage T5. In silico and mutant analysis suggests a possible branched structure of DT57C and DT571/2 LTFs, where the LtfB protein is connected to the phage tail via the LtfA protein and with both proteins carrying receptor recognition domains. Such adhesin arrangement has not been previously recognized in siphoviruses. The LtfA proteins of our phages are found to recognize different host O-antigen types: E. coli O22-like for DT57C phage and E. coli O87 for DT571/2. LtfB proteins are identical in both phages and recognize another host receptor, most probably lipopolysaccharide (LPS) of E. coli O81 type. In these two bacteriophages, LTF function is essential to penetrate the shield of the host's O-antigens. We also demonstrate that LTF-mediated adsorption becomes superfluous when the non-specific cell protection by O-antigen is missing, allowing the phages to bind directly to their common secondary receptor, the outer membrane protein BtuB. The LTF independent adsorption was also demonstrated on an O22-like host mutant missing O-antigen O-acetylation, thus showing the biological value of this O-antigen modification for cell protection against phages
    corecore