42 research outputs found

    Angular harmonics of the excitonic polarization conversions effect

    Full text link
    We suggest a phenomenological theory of the polarization conversions effect, an excitonic analog of the first-order spatial dispersion phenomena which is, however, observed in the photoluminescence rather than in the passing light. The optical polarization response of a model system of electrically neutral quantum dots subject to the magnetic field along the growth axis was calculated by means of the pseudospin method. All possible forms of the polarization response are determined by nine different field-dependent coefficients which represent, therefore, a natural basis for classification of a variety of conversions. Existing experimental data can be well inscribed in this classification scheme. Predictions were made regarding two effects which have not been addressed experimentally.Comment: 14 pages, 1 figure, 1 tabl

    Linear polarization of the photoluminescence of quantum wells

    Full text link
    The degree and orientation of the magnetic-field induced linear polarization of the photoluminescence from a wide range of heterostructures containing (Cd,Mn)Te quantum wells between (Cd,Mn,Mg)Te barriers has been studied as a function of detection photon energy, applied magnetic field strength and orientation in the quantum well plane. A theoretical description of this effect in terms of an in-plane deformation acting on the valence band states is presented and is verified by comparison with the experimental data. We attempted to identify clues to the microscopic origin of the valence band spin anisotropy and to the mechanisms which actually determine the linear polarization of the PL in the quantum wells subject to the in-plane magnetic field. The conclusions of the present paper apply in full measure to non-magnetic QWs as well as ensembles of disk-like QDs with shape and/or strain anisotropy.Comment: 21 pages, 10 figure

    The 1/N Expansion in Noncommutative Quantum Mechanics

    Full text link
    We study the 1/N expansion in noncommutative quantum mechanics for the anharmonic and Coulombian potentials. The expansion for the anharmonic oscillator presented good convergence properties, but for the Coulombian potential, we found a divergent large N expansion when using the usual noncommutative generalization of the potential. We proposed a modified version of the noncommutative Coulombian potential which provides a well-behaved 1/N expansion.Comment: v2: resided version, to appear in PRD, 18 pages, 4 figure

    Suris tetrons: possible spectroscopic evidence for four-particle optical excitations of the 2D electron gas

    Get PDF
    The excitations of a two-dimensional electron gas in quantum wells with intermediate carrier density (~10^{11} cm^{-2}), i.e., between the exciton-trion- and the Fermi-Sea range, are so far poorly understood. We report on an approach to bridge this gap by a magneto-photoluminescence study of modulation-doped (Cd,Mn)Te quantum well structures. Employing their enhanced spin splitting, we analyzed the characteristic magnetic-field behavior of the individual photoluminescence features. Based on these results and earlier findings by other authors, we present a new approach for understanding the optical transitions at intermediate densities in terms of four-particle excitations, the Suris tetrons, which were up to now only predicted theoretically. All characteristic photoluminescence features are attributed to emission from these quasi-particles when attaining different final states.Comment: 12 pages, 3 figure

    Exciton spin decay modified by strong electron-hole exchange interaction

    Full text link
    We study exciton spin decay in the regime of strong electron-hole exchange interaction. In this regime the electron spin precession is restricted within a sector formed by the external magnetic field and the effective exchange fields triggered by random spin flips of the hole. Using Hanle effect measurements, we demonstrate that this mechanism dominates our experiments in CdTe/(Cd,Mg)Te quantum wells. The calculations provide a consistent description of the experimental results, which is supported by independent measurements of the parameters entering the model.Comment: 5 pages, 3 figure

    Two-step model versus one-step model of the inter-polarization conversion and statistics of CdSe/ZnSe quantum dot elongations

    Full text link
    The magneto-optical inter-polarization conversions by a layer of quantum dots have been investigated. Various types of polarization response of the sample were observed as a function of external magnetic field and of the orientation of the sample. The full set of experimental dependences is analyzed in terms of a one-step and a two-step model of spin evolution. The angular distribution of the quantum dots over the directions of elongation in the plane of the sample is taken into account in terms of the two models, and the model predictions are compared with experimental observations
    corecore